Molecular and Monte Carlo simulations of thermal transport in AFM based data storage
Thermal-assisted atomic force microscope (AFM) based data storage is an attractive potential solution to supersede magnetic hard disks for more storage capacity. This research work focuses on analysis of heat transfer in the AFM-based data storage system by using non-equilibrium molecular dynamics (...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/18687 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-18687 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-186872023-03-03T19:28:05Z Molecular and Monte Carlo simulations of thermal transport in AFM based data storage Liu, Xiangjun Yang Jiaping Yang Yaowen School of Civil and Environmental Engineering DRNTU::Engineering::Electrical and electronic engineering::Microelectromechanical systems Thermal-assisted atomic force microscope (AFM) based data storage is an attractive potential solution to supersede magnetic hard disks for more storage capacity. This research work focuses on analysis of heat transfer in the AFM-based data storage system by using non-equilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) methods. The present research has developed a new design and simulation platform for nanoscale heat transfer simulation. The thermal characteristics of silicon nanostructures were investigated using the NEMD method. The results show that the length of nanostructures has remarkable effects on their thermal conductivities k. The relationship equation between them was derived. However, the k is less sensitive to the cross-sectional area perpendicular to the heat flux than to the length. Doctor of Philosophy (CEE) 2009-07-02T08:10:17Z 2009-07-02T08:10:17Z 2009 2009 Thesis Liu, X. (2009). Molecular and Monte Carlo simulations of thermal transport in AFM based data storage. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/18687 10.32657/10356/18687 en 187 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Microelectromechanical systems |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Microelectromechanical systems Liu, Xiangjun Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
description |
Thermal-assisted atomic force microscope (AFM) based data storage is an attractive potential solution to supersede magnetic hard disks for more storage capacity. This research work focuses on analysis of heat transfer in the AFM-based data storage system by using non-equilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) methods. The present research has developed a new design and simulation platform for nanoscale heat transfer simulation. The thermal characteristics of silicon nanostructures were investigated using the NEMD method. The results show that the length of nanostructures has remarkable effects on their thermal conductivities k. The relationship equation between them was derived. However, the k is less sensitive to the cross-sectional area perpendicular to the heat flux than to the length. |
author2 |
Yang Jiaping |
author_facet |
Yang Jiaping Liu, Xiangjun |
format |
Theses and Dissertations |
author |
Liu, Xiangjun |
author_sort |
Liu, Xiangjun |
title |
Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
title_short |
Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
title_full |
Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
title_fullStr |
Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
title_full_unstemmed |
Molecular and Monte Carlo simulations of thermal transport in AFM based data storage |
title_sort |
molecular and monte carlo simulations of thermal transport in afm based data storage |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/18687 |
_version_ |
1759856687004516352 |