Performance analysis and enhancements of adaptive algorithms and their applications
Adaptive filters that self-adjust their transfer functions according to optimizing algorithms are powerful adaptive systems with numerous applications in the fields of signal processing, communications, radar, sonar, seismology, navigation systems and biomedical engineering. An adaptive signal proce...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/18899 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Adaptive filters that self-adjust their transfer functions according to optimizing algorithms are powerful adaptive systems with numerous applications in the fields of signal processing, communications, radar, sonar, seismology, navigation systems and biomedical engineering. An adaptive signal processing algorithm, e.g., the least mean squares (LMS) algorithm and the recursive least square (RLS) algorithm, is used to deal with adaptation of adaptive filters. The adaptive algorithms are expected to be computationally simple, numerically robust, fast convergent and low fluctuant. Unfortunately, none of the adaptive algorithms developed so far perfectly fulfils these requirements. The stability and convergence performance of the widely-used adaptive algorithms also haven't been fully explored. This work aims to deal with performance analysis and enhancements for the adaptive algorithms and their applications. We first develop a new variable step-size adjustment scheme for the LMS algorithm using a quotient form of filtered quadratic output errors. Compared to the existing approaches, the proposed scheme reduces the convergence sensitivity to the power of the measurement noise and improves the steady-state performance and tracking capability for comparable transient behavior, with negligible increase in the computational costs. We then develop variable step-size approaches for the normalized least mean squares (NLMS) algorithm. We derive the optimal step-size which minimizes the mean square deviation at each iteration, and propose four approximated step-sizes according to the correlation properties of the additive noise and the variations of the input excitation. |
---|