Neural network modelling of financial data.
The report deals with the application of neural network modelling techniques to two categories of financial data, namely stock price time series and financial ratios. The purpose of the inquiry is to benchmark neural network tools on financial data derived from the Singapore market, and to provide a...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/20206 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-20206 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-202062024-01-12T10:18:07Z Neural network modelling of financial data. Karolewski, M. A. Tan, Hwee Cheng Nanyang Business School DRNTU::Business::Finance::Equity The report deals with the application of neural network modelling techniques to two categories of financial data, namely stock price time series and financial ratios. The purpose of the inquiry is to benchmark neural network tools on financial data derived from the Singapore market, and to provide a review of the methodology and literature relating to these tools. Three specific neural network applications are considered in detail. These are (a) the modelling of stock price time series, (b) sparse modelling of financial ratios data, (c) stock price variations associated with the release of accounting information. The main conclusions which emerge from the study concern the viability of neural network techniques in the context of the Singapore market. Neural network modelling of stock price time series in isolation is apparently unable to generate useful forecasts concerning future stock price movements. However, neural networks show greater promise in those applications which involve the modelling of financial ratios, particularly in the area of data reduction. A recurring theme in the report is the difficulty of exploiting the full capabilities of neural networks in the Singapore context due to the limited availability of financial ratios data for individual industrial sectors. Master of Business Administration (Management of Information Technology) 2009-12-14T09:07:00Z 2009-12-14T09:07:00Z 1997 1997 Thesis http://hdl.handle.net/10356/20206 en NANYANG TECHNOLOGICAL UNIVERSITY 65 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Business::Finance::Equity |
spellingShingle |
DRNTU::Business::Finance::Equity Karolewski, M. A. Neural network modelling of financial data. |
description |
The report deals with the application of neural network modelling techniques to two categories of financial data, namely stock price time series and financial ratios. The purpose of the inquiry is to benchmark neural network tools on financial data derived from the Singapore market, and to provide a review of the methodology and literature relating to these tools. Three specific neural network applications are considered in detail. These are (a) the modelling of stock price time series, (b) sparse modelling of financial ratios data, (c) stock price variations associated with the release of accounting information. The main conclusions which emerge from the study concern the viability of neural network techniques in the context of the Singapore market. Neural network modelling of stock price time series in isolation is apparently unable to generate useful forecasts concerning future stock price movements. However, neural networks show greater promise in those applications which involve the modelling of financial ratios, particularly in the area of data reduction. A recurring theme in the report is the difficulty of exploiting the full capabilities of neural networks in the Singapore context due to the limited availability of financial ratios data for individual industrial sectors. |
author2 |
Tan, Hwee Cheng |
author_facet |
Tan, Hwee Cheng Karolewski, M. A. |
format |
Theses and Dissertations |
author |
Karolewski, M. A. |
author_sort |
Karolewski, M. A. |
title |
Neural network modelling of financial data. |
title_short |
Neural network modelling of financial data. |
title_full |
Neural network modelling of financial data. |
title_fullStr |
Neural network modelling of financial data. |
title_full_unstemmed |
Neural network modelling of financial data. |
title_sort |
neural network modelling of financial data. |
publishDate |
2009 |
url |
http://hdl.handle.net/10356/20206 |
_version_ |
1789483019499732992 |