Feature extraction and classification for image analysis
Pattern recognition techniques have been widely used in a variety of scientific disciplines including computer vision, image understanding, biology and so on. Although many methods present satisfactory performances for image analysis, they still have several weak points and thus leave a lot of room...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/20614 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-20614 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-206142023-07-04T16:52:10Z Feature extraction and classification for image analysis Liu, Nan Wang Han School of Electrical and Electronic Engineering DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Pattern recognition techniques have been widely used in a variety of scientific disciplines including computer vision, image understanding, biology and so on. Although many methods present satisfactory performances for image analysis, they still have several weak points and thus leave a lot of room for further improvements. For example, the linear discriminant analysis (LDA) algorithm is able to extract discriminative features, but the small sample size (SSS) problem limits its application scope. In this thesis, several feature extraction and learning algorithms are proposed to improve the classification performance in image analysis. In the first proposal, the multiple Trace feature (MTF) is constructed as a novel pattern representation by integrating several Trace transforms where genetic algorithms (GAs) serve as the information fusion tool. Moreover, a novel fitness function is proposed for GAs by combining the bootstrap aggregating algorithm and the cross-validation scheme. As a result, the GAs-based iterative learning process is able to deal with the overfitting problem by using the new fitness. DOCTOR OF PHILOSOPHY (EEE) 2009-12-15T09:02:29Z 2009-12-15T09:02:29Z 2009 2009 Thesis Liu, N. (2009). Feature extraction and classification for image analysis. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/20614 10.32657/10356/20614 en 138 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision |
spellingShingle |
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Liu, Nan Feature extraction and classification for image analysis |
description |
Pattern recognition techniques have been widely used in a variety of scientific disciplines including computer vision, image understanding, biology and so on. Although many methods present satisfactory performances for image analysis, they still have several weak points and thus leave a lot of room for further improvements. For example, the linear discriminant analysis (LDA) algorithm is able to extract discriminative features, but the small sample size (SSS) problem limits its application scope.
In this thesis, several feature extraction and learning algorithms are proposed to improve the classification performance in image analysis. In the first proposal, the multiple Trace feature (MTF) is constructed as a novel pattern representation by integrating several Trace transforms where genetic algorithms (GAs) serve as the information fusion tool. Moreover, a novel fitness function is proposed for GAs by combining the bootstrap aggregating algorithm and the cross-validation scheme. As a result, the GAs-based iterative learning process is able to deal with the overfitting problem by using the new fitness. |
author2 |
Wang Han |
author_facet |
Wang Han Liu, Nan |
format |
Theses and Dissertations |
author |
Liu, Nan |
author_sort |
Liu, Nan |
title |
Feature extraction and classification for image analysis |
title_short |
Feature extraction and classification for image analysis |
title_full |
Feature extraction and classification for image analysis |
title_fullStr |
Feature extraction and classification for image analysis |
title_full_unstemmed |
Feature extraction and classification for image analysis |
title_sort |
feature extraction and classification for image analysis |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/20614 |
_version_ |
1772826061533347840 |