Ultra low power circuits and systems for biomedical application (data converter)

In a rapidly increasing digital world, data converters play a more and more significant role and more sophisticated data converters are required. Because of the dramatic growth of the portable electronic equipments demands and the remarkable decrease of the equipments size, the Delta Sigma (∑Δ) A...

全面介紹

Saved in:
書目詳細資料
主要作者: Chen, Ling
其他作者: Siek Liter
格式: Final Year Project
語言:English
出版: 2010
主題:
在線閱讀:http://hdl.handle.net/10356/20755
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In a rapidly increasing digital world, data converters play a more and more significant role and more sophisticated data converters are required. Because of the dramatic growth of the portable electronic equipments demands and the remarkable decrease of the equipments size, the Delta Sigma (∑Δ) Analog-to-Digital Converter (ADC) which is a potentially power-saving architecture for ADC is developed very fast nowadays. It is usually used for high-resolution analog to digital conversion in the low-voltage environment. The report is to introduce the fundamentals on the ADC such as sampling, quantization and performance metrics. The theories and techniques of ∑Δ ADC such as oversampling technique, noise-shaping concept and different architecture choices are included. In consequence, the whole design process of a 2nd order, single-stage ∑Δ ADC with single-bit quantizer and feedforward path architecture in both the system level and circuit level design, and all the coefficients and simulation results are presented. The project aims to design a data converter for the ultra low power audio applications, so some power-saving techniques in the system level and also in the circuit level are investigated. At last, some future works are indicated for future improvements.