Processing of biodegradable polymer microparticles for sustained drug delivery
CMV Retinitis is the most frequently encountered HIV-related ocular opportunistic infection that affects 25% to 40% of people with AIDS1. It is caused by cytomegalovirus (CMV), which if left untreated can destroy the entire retina in 3 to 6 months and cause blindness. Hence, it would be ideal to dev...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Published: |
2008
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/2193 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Summary: | CMV Retinitis is the most frequently encountered HIV-related ocular opportunistic infection that affects 25% to 40% of people with AIDS1. It is caused by cytomegalovirus (CMV), which if left untreated can destroy the entire retina in 3 to 6 months and cause blindness. Hence, it would be ideal to develop a biodegradable drug delivery system, which would deliver therapeutic levels of ganciclovir locally to the eye for a period of 1 to 3 months, after which the system would be absorbed by the body. The objective of this research is to develop a biocompatible, drug delivery system made from PDLLA and PLGA microspheres, of various LA to GA ratio and molecular weight. The effects of drug distribution and polymer degradation on the drug release profile were investigated. Pure PDLLA and PLGA microspheres and ganciclovir-loaded microspheres were prepared using an oil-in-water (O/W) emulsification technique. GCV-loaded PDLLA and PLGA microspheres were further compressed into tablets to investigate the corresponding degradation and drug release profile. |
---|