Antenna systems for diversity in the next-generation mobile handphones

In the cellular communications environment, short term or fast fading due to multipath has a significant impact on the overall system performance. This type of fading occurs when multiple replicas of the signal of interest arrive at the receiver over different paths, thus having different relative a...

Full description

Saved in:
Bibliographic Details
Main Author: Hui, Hon Tat.
Other Authors: School of Electrical and Electronic Engineering
Format: Research Report
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10356/2894
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Description
Summary:In the cellular communications environment, short term or fast fading due to multipath has a significant impact on the overall system performance. This type of fading occurs when multiple replicas of the signal of interest arrive at the receiver over different paths, thus having different relative amplitude and phases. Antenna diversity can be easily employed to combat fast fading and enhance the performance of mobile communication systems. Utilization of spatial, polarization and pattern diversity is in widespread use at base stations. However, the commercial application of spatial antenna diversity in mobile phones is still very limited mainly due to the constraint of the small size of the modem handset In this project, the diversity performance of a dual helical antenna diversity system on a large ground plane and a mobile handset were investigated. Results for the S parameters, VSWR, frequency response and the radiation patterns of the antenna system were presented. The envelope correlation and diversity gain of the system were also calculated to provide justification for the employment of spatial diversity in mobile handsets. This report presents a description of the theory, experimental setup and procedures for electromagnetic simulation using IE3D software.