Arrhythmia recognition from electrocardiogram using non-linear analysis and unsupervised clustering techniques
In this dissertation, a new analytical framework for arrhythmia recognition in ECG signals using nonlinear analysis and unsupervised clustering techniques is developed. The problem of ECG signal conditioning, ECG episode characterization, characteristic wave detection, and arrhythmia recognition, ha...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Published: |
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/3312 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Summary: | In this dissertation, a new analytical framework for arrhythmia recognition in ECG signals using nonlinear analysis and unsupervised clustering techniques is developed. The problem of ECG signal conditioning, ECG episode characterization, characteristic wave detection, and arrhythmia recognition, have been tackled in this thesis. |
---|