Modelling and analysis of biomedical data using Markov chain Monte Carlo
The aim of this dissertation is to present the problem of biomedical model analysis using Markov Chain Monte Carlo (MCMC), and to provide pointers to the literature for further details. We also present a case study using the most basic of MCMC techniques, the Gibbs sampler.
Saved in:
主要作者: | Tao, Bo. |
---|---|
其他作者: | Chin, Teck Chai |
格式: | Theses and Dissertations |
出版: |
2008
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/3412 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
相似書籍
-
Accurate building occupancy estimation with inhomogeneous Markov chain
由: Lee, Jun Hao
出版: (2022) -
Human pose estimation based on data-driven Monte Carlo hidden Markov models
由: Tao, Meng
出版: (2008) -
Classification and feature selection for biomedical and biological data using soft computing
由: Zhou, Nina
出版: (2011) -
Super-resolution imaging : Markov chain Monte Carlo and state-space approaches
由: Tian, Jing
出版: (2011) -
Occupancy modelling using data driven models
由: Lee, Gabriel Hanjie
出版: (2020)