Pruning methods for RBF networks
Our objective is to a) Perform an Analysis of the existent Minimum Resource Allocation Network algorithm, which uses the output for pruning (Normalized Output Based) b) Create a Modified Algorithm for pruning (Normalized Sigma Based) c) Perform an Analysis of the newly developed algorithm d) Ex...
Saved in:
主要作者: | Tarannum Shakir. |
---|---|
其他作者: | Saratchandran, Paramasivan |
格式: | Theses and Dissertations |
出版: |
2008
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/3419 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
相似書籍
-
Growing and pruning (GAP) RBF networks for call admission control in ATM traffic management
由: Mohit Aiyar
出版: (2008) -
Data classification using hybrid SOM-RBF architecture
由: Choo, Chun Keong.
出版: (2008) -
Development and applications of a sequential, minimal, radial basis function (RBF) neural network learning algorithm
由: Lu, Ying Wei.
出版: (2010) -
Stock selection using General Growing and Pruning Radial Basis Function (GGAP-RBF) neural network
由: Ng, Wee Ding.
出版: (2010) -
Robust neural training and pruning algorithms for a class of nonlinear tracking control systems
由: Ni, Jie
出版: (2008)