Kernel machines and classifier ensemble learning for biomedical applications
This thesis addressed a type of imbalanced data problem encountered in many biomedical applications where one category of data is compactly clustered and the other category of data is scattered in the input space. A new Hybrid Kernel Machine Ensemble (HKME) is proposed to address this problem by int...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Published: |
2008
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/3452 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Summary: | This thesis addressed a type of imbalanced data problem encountered in many biomedical applications where one category of data is compactly clustered and the other category of data is scattered in the input space. A new Hybrid Kernel Machine Ensemble (HKME) is proposed to address this problem by integrating a two-class discriminative Support Vector Machine (SVM) and a one-class recognition-based SVM. |
---|