A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling.
Some state-of-the-art dimensionality reduction techniques are reviewed and investigated in this thesis. Dimensionality reduction techniques can be catego- rized into two serving different purposes. The first category is to mitigate the computational load and to address the Curse-of-Dimensionality, a...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Published: |
2008
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/3685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
id |
sg-ntu-dr.10356-3685 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-36852023-07-04T16:57:12Z A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. Wang, Wanqiu. Chan, Kap Luk School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Some state-of-the-art dimensionality reduction techniques are reviewed and investigated in this thesis. Dimensionality reduction techniques can be catego- rized into two serving different purposes. The first category is to mitigate the computational load and to address the Curse-of-Dimensionality, and the second category is to model the data spread or manifold. ISOMAP and LLE tech- niques are developed for the second purpose, and both of them are embedding techniques. By means of embedding, some data points in a higher dimensional space can be mapped into a lower dimensional space, provided that the pairwise distances are kept unchanged or within a small tolerant range. Some conven- tional category one techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), are developed from variance analysis, but they also can be interpreted as embedding techniques through links to the metric Multidimensional Scaling (MDS). MASTER OF ENGINEERING (EEE) 2008-09-17T09:35:10Z 2008-09-17T09:35:10Z 2005 2005 Thesis Wang, W. (2005). A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. Master’s thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/3685 10.32657/10356/3685 Nanyang Technological University application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Wang, Wanqiu. A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
description |
Some state-of-the-art dimensionality reduction techniques are reviewed and investigated in this thesis. Dimensionality reduction techniques can be catego- rized into two serving different purposes. The first category is to mitigate the computational load and to address the Curse-of-Dimensionality, and the second category is to model the data spread or manifold. ISOMAP and LLE tech- niques are developed for the second purpose, and both of them are embedding techniques. By means of embedding, some data points in a higher dimensional space can be mapped into a lower dimensional space, provided that the pairwise distances are kept unchanged or within a small tolerant range. Some conven- tional category one techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), are developed from variance analysis, but they also can be interpreted as embedding techniques through links to the metric Multidimensional Scaling (MDS). |
author2 |
Chan, Kap Luk |
author_facet |
Chan, Kap Luk Wang, Wanqiu. |
format |
Theses and Dissertations |
author |
Wang, Wanqiu. |
author_sort |
Wang, Wanqiu. |
title |
A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
title_short |
A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
title_full |
A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
title_fullStr |
A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
title_full_unstemmed |
A study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
title_sort |
study of dimensionality reduction as subspace data embedding linked by multidimensional scaling. |
publishDate |
2008 |
url |
https://hdl.handle.net/10356/3685 |
_version_ |
1772829026544517120 |