Understanding bio-activity of salicylaldehyde related complexes

The structural optimizations of a series of salicylaldehyde semicarbazone (H2ssc)and their Cu(II) and Au(II) complexes of have been carried out using Density Functional Theory (DFT) calculations and their structural parameters comparatively analyzed. H2ssc and its complexes have been shown to exhib...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yee, Alven Yi Long.
مؤلفون آخرون: Lim Kok Hwa
التنسيق: Final Year Project
اللغة:English
منشور في: 2010
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/38863
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The structural optimizations of a series of salicylaldehyde semicarbazone (H2ssc)and their Cu(II) and Au(II) complexes of have been carried out using Density Functional Theory (DFT) calculations and their structural parameters comparatively analyzed. H2ssc and its complexes have been shown to exhibit tumour inhibitory activity with the metal complex of such ligands to display enhanced biological activities. Therefore a molecular understanding of metal-base therapeutic drugs has become of particular interest in bio-activity predictions for the purpose of drug design. In this project, the optimized structures from DFT calculations show that the metal atom is four coordinated with a distorted square planar geometry with a N-O2-Cl donor set.Conformations studies have been conducted to ensure that the optimized structures are not local but global minima on the potential energy surface. A global minimum on the potential energy surface is equivalent to the most stable conformation. The reaction energies of the compounds for he complexation process have also been computed which indicate that for the complexation, process with Cu(II) is xothermic and spontaneous but otherwise for Au(II). The electronic properties have also been extensive studied using Natural Bond Orbital (NBO) analysis and Bader charge analysis. In addition, the ionization otential and chemical hardness of the ompounds have also been investigated using Koopman’s theorem. However, it was noted that the effect of substituent on these molecular properties was insignificant.