Electronic polarization effects on protein pdb 2khk.

Standard AMBER charge model with non-polarized force fields and polarized protein-specific charge (PPC) charge model with polarized force fields were employed to study Molecular Dynamics (MD) simulations and their effects on Protein Data Bank (PDB) entry 2KHK which consists of 53 amino acids, b30 to...

Full description

Saved in:
Bibliographic Details
Main Author: Chew, Xiu Qian.
Other Authors: Zhang Aidong
Format: Final Year Project
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/38872
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-38872
record_format dspace
spelling sg-ntu-dr.10356-388722023-02-28T23:13:22Z Electronic polarization effects on protein pdb 2khk. Chew, Xiu Qian. Zhang Aidong School of Physical and Mathematical Sciences Zhang Da Wei DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry Standard AMBER charge model with non-polarized force fields and polarized protein-specific charge (PPC) charge model with polarized force fields were employed to study Molecular Dynamics (MD) simulations and their effects on Protein Data Bank (PDB) entry 2KHK which consists of 53 amino acids, b30 to 82 domain of F1Fo ATP synthases in Escherichia coli. Our study reveals that the protein structure obtained under PPC simulation is similar to the native state discovered by NMR method and it corresponds to the lowest-energy conformation of the protein. Whereas for AMBER simulation, denatured protein was observed and the structure deviates much from the native state. Moreover energy conformation of the denatured protein is much higher than that of the native structure. Hence indicating that under the influence of PPC, the native conformations of these proteins are dynamically more stable. This presents strong evidence that polarization effect plays a significant role in stabilizing the native conformations of proteins. Bachelor of Science in Chemistry and Biological Chemistry 2010-05-20T02:56:46Z 2010-05-20T02:56:46Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/38872 en 23 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry
spellingShingle DRNTU::Science::Chemistry::Physical chemistry::Electrochemistry
Chew, Xiu Qian.
Electronic polarization effects on protein pdb 2khk.
description Standard AMBER charge model with non-polarized force fields and polarized protein-specific charge (PPC) charge model with polarized force fields were employed to study Molecular Dynamics (MD) simulations and their effects on Protein Data Bank (PDB) entry 2KHK which consists of 53 amino acids, b30 to 82 domain of F1Fo ATP synthases in Escherichia coli. Our study reveals that the protein structure obtained under PPC simulation is similar to the native state discovered by NMR method and it corresponds to the lowest-energy conformation of the protein. Whereas for AMBER simulation, denatured protein was observed and the structure deviates much from the native state. Moreover energy conformation of the denatured protein is much higher than that of the native structure. Hence indicating that under the influence of PPC, the native conformations of these proteins are dynamically more stable. This presents strong evidence that polarization effect plays a significant role in stabilizing the native conformations of proteins.
author2 Zhang Aidong
author_facet Zhang Aidong
Chew, Xiu Qian.
format Final Year Project
author Chew, Xiu Qian.
author_sort Chew, Xiu Qian.
title Electronic polarization effects on protein pdb 2khk.
title_short Electronic polarization effects on protein pdb 2khk.
title_full Electronic polarization effects on protein pdb 2khk.
title_fullStr Electronic polarization effects on protein pdb 2khk.
title_full_unstemmed Electronic polarization effects on protein pdb 2khk.
title_sort electronic polarization effects on protein pdb 2khk.
publishDate 2010
url http://hdl.handle.net/10356/38872
_version_ 1759854548750434304