Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor

Recently, a novel osmotic membrane bioreactor (OsMBR) was developed which utilized a forward osmosis (FO) membrane module to replace the microfiltration/ultrafiltration in the conventional MBR system. Such system exhibited very high rejection of various contaminants and mineral salts due to the natu...

Full description

Saved in:
Bibliographic Details
Main Author: Xiao, De Zhong
Other Authors: Tang Chuyang
Format: Final Year Project
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/38879
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-38879
record_format dspace
spelling sg-ntu-dr.10356-388792023-03-03T17:22:49Z Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor Xiao, De Zhong Tang Chuyang School of Civil and Environmental Engineering DRNTU::Engineering::Environmental engineering::Water treatment Recently, a novel osmotic membrane bioreactor (OsMBR) was developed which utilized a forward osmosis (FO) membrane module to replace the microfiltration/ultrafiltration in the conventional MBR system. Such system exhibited very high rejection of various contaminants and mineral salts due to the nature of FO membrane. On the other hand, this high rejection also caused the accumulation of salts in the reactor which could have adverse impact on the biological activities as well as the membrane filtration performance. In this project, a FO model was developed based on internal concentration polarization (ICP) theory, and the experimental results from independent FO tests for both initial flux and continuous flux performance matched the model predictions very well, which verified the model developed and proved the dominant role of ICP in FO’s flux performance. Hence, the mass balance equation of an OsMBR system was coupled with the ICP model to simulation the effects of salt accumulation on the system performance in membrane filtration aspect. Systems operated under two possible sludge wastage strategies – impulse wasting and continuous wasting were simulated and the results were presented and analyzed. Under impulse sludge wasting condition, water flux kept decreasing before the wastage was carried out. The flux performance would be affected by different draw solution concentration, membrane orientation, reactor size and inflow water salt concentration. To maintain a minimum flux level, the impulse wasting needed to be carried out at a system dependent frequency. Oppositely, a stable flux occurred after a period of filtration under continuous sludge wasting condition, and the salt concentration in the reactor also reached maximum at the same time. The level of the stable flux was controlled by the sludge wastage flow rate and the time scale to reach the stable flux could be indicated by the solids retention time (SRT) of the system. Membrane orientation was also found to affect the degree of flux reduction and the stable flux. Bachelor of Engineering (Environmental Engineering) 2010-05-20T03:40:59Z 2010-05-20T03:40:59Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/38879 en Nanyang Technological University 48 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Environmental engineering::Water treatment
spellingShingle DRNTU::Engineering::Environmental engineering::Water treatment
Xiao, De Zhong
Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
description Recently, a novel osmotic membrane bioreactor (OsMBR) was developed which utilized a forward osmosis (FO) membrane module to replace the microfiltration/ultrafiltration in the conventional MBR system. Such system exhibited very high rejection of various contaminants and mineral salts due to the nature of FO membrane. On the other hand, this high rejection also caused the accumulation of salts in the reactor which could have adverse impact on the biological activities as well as the membrane filtration performance. In this project, a FO model was developed based on internal concentration polarization (ICP) theory, and the experimental results from independent FO tests for both initial flux and continuous flux performance matched the model predictions very well, which verified the model developed and proved the dominant role of ICP in FO’s flux performance. Hence, the mass balance equation of an OsMBR system was coupled with the ICP model to simulation the effects of salt accumulation on the system performance in membrane filtration aspect. Systems operated under two possible sludge wastage strategies – impulse wasting and continuous wasting were simulated and the results were presented and analyzed. Under impulse sludge wasting condition, water flux kept decreasing before the wastage was carried out. The flux performance would be affected by different draw solution concentration, membrane orientation, reactor size and inflow water salt concentration. To maintain a minimum flux level, the impulse wasting needed to be carried out at a system dependent frequency. Oppositely, a stable flux occurred after a period of filtration under continuous sludge wasting condition, and the salt concentration in the reactor also reached maximum at the same time. The level of the stable flux was controlled by the sludge wastage flow rate and the time scale to reach the stable flux could be indicated by the solids retention time (SRT) of the system. Membrane orientation was also found to affect the degree of flux reduction and the stable flux.
author2 Tang Chuyang
author_facet Tang Chuyang
Xiao, De Zhong
format Final Year Project
author Xiao, De Zhong
author_sort Xiao, De Zhong
title Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
title_short Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
title_full Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
title_fullStr Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
title_full_unstemmed Model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
title_sort model study of the salt accumulation effect on the membrane performance in osmotic membrane bioreactor
publishDate 2010
url http://hdl.handle.net/10356/38879
_version_ 1759857611863228416