Semi-supervised chemometric methodology for improved multivariate calibration of spectrometers.
In this work, a semi-supervised chemometric methodology is designed to improve the predicted accuracy for the multivariate calibration in spectrometers. The simulation is carried out on MATLAB platform. The available toolbox of partial least-squares regression (PLS), which is a very powerful algorit...
Saved in:
主要作者: | Chen, Zheng Yu. |
---|---|
其他作者: | School of Chemical and Biomedical Engineering |
格式: | Final Year Project |
語言: | English |
出版: |
2010
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/39522 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Chemometric techniques for multivariate calibration and their application in spectroscopic sensors
由: Ke, Wang
出版: (2012) -
Combining multiple models to improve calibration accuracy of spectrometers
由: Tan, Jonathan Jun Wei.
出版: (2010) -
Spectral renormalization for multi-component fourier transform infrared absorbance data: Importance to multivariate calibration and quantitative exploratory chemometrics studies
由: Chew, W., et al.
出版: (2014) -
Improving detection of chromosomal abnormalities in multiple myeloma using fluorescence in situ hybridization
由: Naw, Wah Wah
出版: (2010) -
NIR “matchbox size” spectrometer can quantify and detect malaria infection in Plasmodium falciparum infected red blood cells
由: Adegoke, John A., et al.
出版: (2020)