Membrane characterization and foulant cake analysis
Over the past decade, there has been an increase in the use of advanced membrane technologies for wastewater treatment. However, effluent water usually contain high amount of effluent organic matter (EfOM), contributing to membrane fouling which result in declining flux performance. Previous studies...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/39597 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-39597 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-395972023-03-03T16:58:16Z Membrane characterization and foulant cake analysis Tan, Darryl Zheng Qiang. Tang Chuyang School of Civil and Environmental Engineering Environmental Engineering Research Centre DRNTU::Engineering::Environmental engineering Over the past decade, there has been an increase in the use of advanced membrane technologies for wastewater treatment. However, effluent water usually contain high amount of effluent organic matter (EfOM), contributing to membrane fouling which result in declining flux performance. Previous studies show that fouling is influenced by a variety of factors including feed water characteristics, membrane properties and operational condition. Hence, this report aims to study the effect these parameters on membrane fouling, whereby characterization of membrane and foulant cake analysis is carried out to provide evidences for the study. Results show that Scanning Electron Microscopy (SEM) imaging may only be a tool use to briefly investigate on the surface morphology of membrane. Protein fouling has the effect of increasing the hydrophobicity characteristic of membrane. Membranes fouled by a common feed protein will exhibit similar surface hydrophobicity, regardless of membrane type and foulant thickness. Solution pH has a large influence on electrostatic charge of feed protein molecule. At higher zeta potential, feed constituent possess stronger electrostatic repulsion force, creating greater barrier for foulant-foulant deposition on the membrane surface. At higher initial flux, the foulant is subjected to greater hydrodynamic drag force toward the membrane, resulting in greater decline in flux. Bachelor of Engineering (Environmental Engineering) 2010-06-01T04:36:17Z 2010-06-01T04:36:17Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/39597 en Nanyang Technological University 46 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Environmental engineering |
spellingShingle |
DRNTU::Engineering::Environmental engineering Tan, Darryl Zheng Qiang. Membrane characterization and foulant cake analysis |
description |
Over the past decade, there has been an increase in the use of advanced membrane technologies for wastewater treatment. However, effluent water usually contain high amount of effluent organic matter (EfOM), contributing to membrane fouling which result in declining flux performance. Previous studies show that fouling is influenced by a variety of factors including feed water characteristics, membrane properties and operational condition. Hence, this report aims to study the effect these parameters on membrane fouling, whereby characterization of membrane and foulant cake analysis is carried out to provide evidences for the study. Results show that Scanning Electron Microscopy (SEM) imaging may only be a tool use to briefly investigate on the surface morphology of membrane. Protein fouling has the effect of increasing the hydrophobicity characteristic of membrane. Membranes fouled by a common feed protein will exhibit similar surface hydrophobicity, regardless of membrane type and foulant thickness. Solution pH has a large influence on electrostatic charge of feed protein molecule. At higher zeta potential, feed constituent possess stronger electrostatic repulsion force, creating greater barrier for foulant-foulant deposition on the membrane surface. At higher initial flux, the foulant is subjected to greater hydrodynamic drag force toward the membrane, resulting in greater decline in flux. |
author2 |
Tang Chuyang |
author_facet |
Tang Chuyang Tan, Darryl Zheng Qiang. |
format |
Final Year Project |
author |
Tan, Darryl Zheng Qiang. |
author_sort |
Tan, Darryl Zheng Qiang. |
title |
Membrane characterization and foulant cake analysis |
title_short |
Membrane characterization and foulant cake analysis |
title_full |
Membrane characterization and foulant cake analysis |
title_fullStr |
Membrane characterization and foulant cake analysis |
title_full_unstemmed |
Membrane characterization and foulant cake analysis |
title_sort |
membrane characterization and foulant cake analysis |
publishDate |
2010 |
url |
http://hdl.handle.net/10356/39597 |
_version_ |
1759854619605860352 |