Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles

This report presents a systematic study on the feasibility of using oligonucleotide functionalized gold nanoparticles (AuNPs) for detection of mercury ions (Hg2+). AuNPs are chosen for their unique size dependent optical properties, which enables visual observation. Oligonucleotide probes were delib...

Full description

Saved in:
Bibliographic Details
Main Author: Parekh, Kirit Vijaykumar.
Other Authors: Li Changming
Format: Final Year Project
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/40073
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-40073
record_format dspace
spelling sg-ntu-dr.10356-400732023-03-03T15:32:56Z Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles Parekh, Kirit Vijaykumar. Li Changming School of Chemical and Biomedical Engineering DRNTU::Engineering::Chemical engineering::Biotechnology This report presents a systematic study on the feasibility of using oligonucleotide functionalized gold nanoparticles (AuNPs) for detection of mercury ions (Hg2+). AuNPs are chosen for their unique size dependent optical properties, which enables visual observation. Oligonucleotide probes were deliberately designed with incorporated T-T base mismatches to exploit the unique Thymine-Hg2+-Thymine (T-Hg2+-T) coordination chemistry. AuNPs were synthesized according to Turkevich’s method and then functionalized separately with the six thiol terminated oligonucleotides. These three sensing systems, oligo1/oligo2-AuNPs (4 T-T mismatches), oligo3/oligo4-AuNPs (6 T-T mismatches) and oligo5/oligo6-AuNPs (8 T-T mismatches) were treated with varying concentrations of Hg2+ ions. Results were analyzed using Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and visually. In general, addition of Hg2+ ions led to the aggregation of the AuNPs as seen in the SEM. These results were coherent with the red-shift observed in the UV-Vis spectra and the colour change of the solution from red to blue-grey. The plot of absorption ratio (A700/A520) showed a sensitive function towards the [Hg2+]. Oligo1/Oligo2-AuNP sensing system displayed a linear range of 0-350 nM and a low detection limit of 61 nM. The preliminary results from the other sensing system imply that by varying the number of T-T mismatches, the linear detection range can be tuned and be used accordingly. Nonetheless, a simple bio-inspired colorimetric sensor which is cheap, fast and easy to use has been successfully designed for Hg2+ detection. Bachelor of Engineering (Chemical and Biomolecular Engineering) 2010-06-10T02:31:08Z 2010-06-10T02:31:08Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/40073 en Nanyang Technological University 68 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Chemical engineering::Biotechnology
spellingShingle DRNTU::Engineering::Chemical engineering::Biotechnology
Parekh, Kirit Vijaykumar.
Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
description This report presents a systematic study on the feasibility of using oligonucleotide functionalized gold nanoparticles (AuNPs) for detection of mercury ions (Hg2+). AuNPs are chosen for their unique size dependent optical properties, which enables visual observation. Oligonucleotide probes were deliberately designed with incorporated T-T base mismatches to exploit the unique Thymine-Hg2+-Thymine (T-Hg2+-T) coordination chemistry. AuNPs were synthesized according to Turkevich’s method and then functionalized separately with the six thiol terminated oligonucleotides. These three sensing systems, oligo1/oligo2-AuNPs (4 T-T mismatches), oligo3/oligo4-AuNPs (6 T-T mismatches) and oligo5/oligo6-AuNPs (8 T-T mismatches) were treated with varying concentrations of Hg2+ ions. Results were analyzed using Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and visually. In general, addition of Hg2+ ions led to the aggregation of the AuNPs as seen in the SEM. These results were coherent with the red-shift observed in the UV-Vis spectra and the colour change of the solution from red to blue-grey. The plot of absorption ratio (A700/A520) showed a sensitive function towards the [Hg2+]. Oligo1/Oligo2-AuNP sensing system displayed a linear range of 0-350 nM and a low detection limit of 61 nM. The preliminary results from the other sensing system imply that by varying the number of T-T mismatches, the linear detection range can be tuned and be used accordingly. Nonetheless, a simple bio-inspired colorimetric sensor which is cheap, fast and easy to use has been successfully designed for Hg2+ detection.
author2 Li Changming
author_facet Li Changming
Parekh, Kirit Vijaykumar.
format Final Year Project
author Parekh, Kirit Vijaykumar.
author_sort Parekh, Kirit Vijaykumar.
title Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
title_short Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
title_full Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
title_fullStr Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
title_full_unstemmed Bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
title_sort bio-inspired colorimetric detection of mercury ions using dna functionalized gold nanoparticles
publishDate 2010
url http://hdl.handle.net/10356/40073
_version_ 1759853611956830208