Investigations in de-burring on micromilled channels
Microfluidics is the science of the interactions of very small amounts of liquid, where certain negligible effects in the macro scale become dominant. Polymer replication technique such as hot embossing is commonly used for the manufacturing of microfluidic device. Aluminum alloy substrates can be u...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/40566 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-40566 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-405662023-03-04T18:39:51Z Investigations in de-burring on micromilled channels Jaya Perkhass Santiran Sathyan Subbiah School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Microfluidics is the science of the interactions of very small amounts of liquid, where certain negligible effects in the macro scale become dominant. Polymer replication technique such as hot embossing is commonly used for the manufacturing of microfluidic device. Aluminum alloy substrates can be used as moulds for embossing microfluidic channels and these moulds are produced through a micromilling process. Micromilling process is able to create 3D microchannels; however micro-sized burrs are created throughout the duration of this process. The main focus of this project is in removing the burrs created by micromilling process. Miniature brushes with abrasive filaments are used as a de-burring tool to achieve this. Effectiveness of the de-burring brushes are evaluated by combining different machining parameters such as, spindle speed (rpm), feed rate (mm/min), depth of cut (mm), and direction of cut. Experimental results, in the form of SEM pictures are compared to study on the brushes de-burring efficiency and to obtain the finest de-burring parameters. Microscopy profile of surface cross-sections and brush flaring effect are also studied to determine the effect of de-burring brushes on the microchannels. Bachelor of Engineering (Mechanical Engineering) 2010-06-16T07:54:02Z 2010-06-16T07:54:02Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/40566 en Nanyang Technological University 67 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Jaya Perkhass Santiran Investigations in de-burring on micromilled channels |
description |
Microfluidics is the science of the interactions of very small amounts of liquid, where certain negligible effects in the macro scale become dominant. Polymer replication technique such as hot embossing is commonly used for the manufacturing of microfluidic device. Aluminum alloy substrates can be used as moulds for embossing microfluidic channels and these moulds are produced through a micromilling process. Micromilling process is able to create 3D microchannels; however micro-sized burrs are created throughout the duration of this process.
The main focus of this project is in removing the burrs created by micromilling process. Miniature brushes with abrasive filaments are used as a de-burring tool to achieve this. Effectiveness of the de-burring brushes are evaluated by combining different machining parameters such as, spindle speed (rpm), feed rate (mm/min), depth of cut (mm), and direction of cut.
Experimental results, in the form of SEM pictures are compared to study on the brushes de-burring efficiency and to obtain the finest de-burring parameters. Microscopy profile of surface cross-sections and brush flaring effect are also studied to determine the effect of de-burring brushes on the microchannels. |
author2 |
Sathyan Subbiah |
author_facet |
Sathyan Subbiah Jaya Perkhass Santiran |
format |
Final Year Project |
author |
Jaya Perkhass Santiran |
author_sort |
Jaya Perkhass Santiran |
title |
Investigations in de-burring on micromilled channels |
title_short |
Investigations in de-burring on micromilled channels |
title_full |
Investigations in de-burring on micromilled channels |
title_fullStr |
Investigations in de-burring on micromilled channels |
title_full_unstemmed |
Investigations in de-burring on micromilled channels |
title_sort |
investigations in de-burring on micromilled channels |
publishDate |
2010 |
url |
http://hdl.handle.net/10356/40566 |
_version_ |
1759855962284359680 |