Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids
This work aims to apply Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) to simulate the interactions between unsteady compressible flow and immersed moving and/or deforming solid structures. The main challenge is due to the fact that fluid dynamics, structural dynamics...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/41529 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-41529 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-415292023-03-11T17:26:02Z Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids Lv Xin Huang Xiaoyang Zhao Yong School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering This work aims to apply Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) to simulate the interactions between unsteady compressible flow and immersed moving and/or deforming solid structures. The main challenge is due to the fact that fluid dynamics, structural dynamics and their interactions are highly nonlinear, multiscale and multiphysical phenomena. In this work, an efficient and accurate numerical simulation package, incorporating solution methods for both three dimensional Navier-Stokes (NS) and structural dynamic equations, has been successfully developed and validated. The baseline method is a finite-volume scheme using unstructured grids. Such features ensure the convenient and accurate modeling of complex geometries. A 3rd-order high-resolution edge-based Roe approximate scheme is adopted in the NS solver to accurately capture the possible existence of shock in highspeed flow regions, while cell-based 2nd-order Galerkin-type formulation is used to calculate the variable gradients. For temporal integration, a novel matrix-free implicit dual time-stepping is adopted. To simulate turbulent flows, a novel mixed dynamic formulation of eddy-viscosity subgrid model based on Smagorinsky-Lilly method has been integrated into the Large-eddy simulation module of the package. To couple the NS and structural dynamics solvers more efficiently, the immersed membrane method (IMM) is adopted and enhanced to handle the fluid-structure interaction. DOCTOR OF PHILOSOPHY (MAE) 2010-07-16T07:56:05Z 2010-07-16T07:56:05Z 2008 2008 Thesis Lv X. (2008). Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/41529 10.32657/10356/41529 en 352 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Lv Xin Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
description |
This work aims to apply Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) to simulate the interactions between unsteady compressible flow and immersed moving and/or deforming solid structures. The main challenge is
due to the fact that fluid dynamics, structural dynamics and their interactions are highly nonlinear, multiscale and multiphysical phenomena. In this work, an efficient and accurate numerical simulation package, incorporating solution methods for both three dimensional Navier-Stokes (NS) and structural dynamic equations, has been successfully developed and validated. The baseline method is a finite-volume scheme using unstructured grids. Such features ensure the convenient and accurate modeling of complex geometries. A 3rd-order high-resolution edge-based Roe approximate scheme is adopted in the NS solver to accurately capture the possible existence of shock in highspeed flow regions, while cell-based 2nd-order Galerkin-type formulation is used to calculate the variable gradients. For temporal integration, a novel matrix-free implicit dual time-stepping is adopted. To simulate turbulent flows, a novel mixed dynamic formulation of eddy-viscosity subgrid model based on Smagorinsky-Lilly method has been integrated into the Large-eddy simulation module of the package. To couple the NS and structural dynamics solvers more efficiently, the immersed membrane method (IMM) is adopted and enhanced to handle the fluid-structure interaction. |
author2 |
Huang Xiaoyang |
author_facet |
Huang Xiaoyang Lv Xin |
format |
Theses and Dissertations |
author |
Lv Xin |
author_sort |
Lv Xin |
title |
Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
title_short |
Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
title_full |
Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
title_fullStr |
Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
title_full_unstemmed |
Numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
title_sort |
numerical method for simulation of unsteady flows with immersed moving/deforming elastic structures on unstructured grids |
publishDate |
2010 |
url |
https://hdl.handle.net/10356/41529 |
_version_ |
1761781912025694208 |