Ion-beam studies and isotope production using dense plasma focus

The objective of this project is to investigate the production of Positron-Emission-Tomography (PET) [II isotopes (11C, 13N, 150, 18F) in the dense plasma focus. We aim to test the feasibility of replacing costly present-day cyclotron isotope production facilities for PET, with simpler, cheaper and...

Full description

Saved in:
Bibliographic Details
Main Author: S. V. Springham
Other Authors: National Institute of Education
Format: Research Report
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/42321
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The objective of this project is to investigate the production of Positron-Emission-Tomography (PET) [II isotopes (11C, 13N, 150, 18F) in the dense plasma focus. We aim to test the feasibility of replacing costly present-day cyclotron isotope production facilities for PET, with simpler, cheaper and easily maintainable repetitive plasma focus devices. PET is a rapidly growing bio-medical imaging modality. It is now well established as an essential imaging technique in the fields of oncology, cardiology and neurology. Some common diagnostic applications of PET imaging are given in the table below. PET scanners produce three-dimensional images of radio-pharmaceuticals that have been injected into a patient prior to the scan. These radio-pharmaceuticals are labeled with a positron emitting isotope - usually 11C, 13N, 150, or 18F. The half-lives of these isotopes are short – ranging from 2 to 110 minutes - hence the production of isotopes must be local to the PET facility, The principle underlying PET is that each emitted positron annihilates with an electron creating two gamma-rays travelling in diametrically opposite directions from the point of origin (where the radiopharmaceutical s is localized). From the positions of these detected gamma-ray pairs the three dimensional image of the radio-pharmaceutical distribution in the patient is reconstructed.