Loading of antibiotics nanostructured materials and investigating the controlled in vitro release rate from bone cement

This report is presented to Nanyang Technological University as partial fulfillment of the requirements for Industrial Attachment. The report describes the knowledge and skills learnt by the student and also sewed as a proper documentation of the project that she was involved during the period of he...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Yi Ling.
Other Authors: School of Chemical and Biomedical Engineering
Format: Industrial Attachment (IA)
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/42416
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This report is presented to Nanyang Technological University as partial fulfillment of the requirements for Industrial Attachment. The report describes the knowledge and skills learnt by the student and also sewed as a proper documentation of the project that she was involved during the period of her Industrial Attachment with Institute of Chemical and Engineering Sciences (ICES) [refer to Appendix A and B]. Antibiotic X (AX) has been widely used in the treatment of osteomyelitis, which is infection of bone tissue. It must be administered at high concentration for prolonged time at infection site in order for healing process to begin. However, one major issue encountered by doctors in treating osteomyelitis is the low elution rate of AX from bone cement. In addition, low AX release rate also poses a risk of induction of antibiotic resistance when insufficient doses are administered on site. The research aims to improve elution of AX from commercial acrylic bone cement (Simplex, Cook and Smartset) with addition of our synthesized nanostructured materials (hydroxyapatite nanorods, alumina nanofibers and carbon nanotubes) without compromising on its mechanical properties. For this purpose, samples with varying amount of nanostructured materials and AX were prepared using either hand mixing or impregnation method. In vitro release studies were performed by soaking samples in phosphate buffered saline (PBS) solution at pH 7.4 and 37ºC for 60 days. The PBS was replaced every 24 hours and samples containing released AX concentration were investigated using spectrophotometric technique with o-phthaldialdehyde as derivatizing reagent. Outcomes of release kinetics were compared to commercial antibiotic loaded cement of controlled sample which did not contain nanostructured materials. The release profiles of all bone cement samples showed a fast release during the first week, diminishing progressively until the end of the study.