POPFNN-CRI(S) : a fuzzy neural network based on the compositional rule of inference

Fuzzy Neural Networks are hybrid systems that combine the human inference style and natural language description of fuzzy systems with the learning and parallel processing of neural networks. A novel FNN architecture, an improved selforganizing neural network algorithm and two novel fuzzy members...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ang, Kai Keng
مؤلفون آخرون: Quek Hiok Chai
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/42627
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Fuzzy Neural Networks are hybrid systems that combine the human inference style and natural language description of fuzzy systems with the learning and parallel processing of neural networks. A novel FNN architecture, an improved selforganizing neural network algorithm and two novel fuzzy membership function identification algorithms are proposed. They are the Pseudo Outer-Product based Fuzzy Neural Network using the Compositional Rule of Inference and a Singleton Fuzzifier (POPFNN-CRI(S)), the Modified Learning Vector Quantization (MLVQ) algorithm, the Fuzzy Kohonen Partition (FKP) and the Pseudo Fuzzy Kohonen Partition (PFKP) algorithms.