Data mining for mathematical question answering community

Question Answering (QA) communities such as Yahoo! Answers and Baidu Zhidao are currently very popular with millions of users. The QA communities are particularly useful for the educational domain such as mathematics. Similar to traditional QA communities, a mathematical QA community should also all...

全面介紹

Saved in:
書目詳細資料
主要作者: Ma, Kai
其他作者: Hui Siu Cheung
格式: Theses and Dissertations
語言:English
出版: 2011
主題:
在線閱讀:http://hdl.handle.net/10356/43661
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Question Answering (QA) communities such as Yahoo! Answers and Baidu Zhidao are currently very popular with millions of users. The QA communities are particularly useful for the educational domain such as mathematics. Similar to traditional QA communities, a mathematical QA community should also allow users to search, ask, answer and discover mathematical questions. However, as mathematical formulas are highly symbolic and structured, it is challenging to develop such a mathematical QA community. In this research, we aim to propose efficient and effective techniques for supporting the ”search, ask, answer and discover” framework for a mathematical QA community. In particular, we focus on investigating different data mining techniques for mathematical question search, mathematical question topic classification and human expert finding. Mathematical question search will help retrieve a set of similar mathematical problems together with the answers posted by other users. Mathematical question topic classification will help recommend the possible topics of user posted questions. Human expert finding will help find a list of experts who are most likely able to answer a posted question according to their expertise.