Effects of membrane chlorination on performance of reverse osmosis and nano-filtration membranes

Biological fouling is a perennial problem associated with membrane technology and disinfection is used to reduce the phenomenon to prolong the life span of membranes. However, chlorine has been known to be chemically aggressive towards high performance aromatic polyamide membrane. This report discus...

全面介紹

Saved in:
書目詳細資料
主要作者: Ho, Yung Lin.
其他作者: Tang Chuyang
格式: Final Year Project
語言:English
出版: 2011
主題:
在線閱讀:http://hdl.handle.net/10356/44986
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Biological fouling is a perennial problem associated with membrane technology and disinfection is used to reduce the phenomenon to prolong the life span of membranes. However, chlorine has been known to be chemically aggressive towards high performance aromatic polyamide membrane. This report discussed the effects of different chlorine concentration, under constant pH and exposure time, on the physiochemical properties and performances of three commercially available reverse osmosis/ nanofiltration membranes (NF90, BW30 and NF270, FilmTec©). The reliability of the convention expressing chlorine exposure in terms of ppm.hr was also briefly discussed. The membranes were analysed using X-ray spectroscopy (XPS), attenuated total reflection-Fourier transform infrared (ATR-FTIR), contact angle, sodium chloride and polyethelyne glycols filtration test. The XPS spectra showed that the interchangeability concept of chlorine concentration and soaking time is not reliable and that amount of chlorine attachment is proportional to chlorine concentration under same exposure time. Meanwhile the FTIR spectra revealed that chlorine caused the loss of hydrogen bonding sites by observing shift and disappearance of certain peaks after chlorination. Exposed membrane presented different degree of hydrophilicity due to differences in membrane chemistry. Initial flux for the chlorinated membranes was reduced but an increasing trend was observed with filtration time. Salt rejections for both NF90 and BW30 chlorinated membranes were comparable or slightly better than the virgin except for the salt rejections of 2000 ppm × 24 hrs and NF270 chlorinated membranes that were reduced. Salt permeability for all membranes was improved after chlorination. The rejection and permeability of PEG for NF90 have the same trend as the salt but slightly lower performance. This concludes that besides physiochemical changes, chlorination has affected the membrane performance which is chlorine concentration and membrane chemistry-dependent.