Sequential learning for extreme learning machine

A novel sequential learning algorihtm for training Single Hidden Layer Feedforward Neural Network (SLFN), Online Sequential Extreme Learning Machine (OS-ELM) is proposed. OS-ELM is based on the combination of Extreme Learning Machine (ELM) and the recursive least-squares (RLS) algorithm. In the thes...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Liang, Nanying
مؤلفون آخرون: Paramasivan Saratchandran
التنسيق: Theses and Dissertations
منشور في: 2008
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/4601
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:A novel sequential learning algorihtm for training Single Hidden Layer Feedforward Neural Network (SLFN), Online Sequential Extreme Learning Machine (OS-ELM) is proposed. OS-ELM is based on the combination of Extreme Learning Machine (ELM) and the recursive least-squares (RLS) algorithm. In the thesis, we explore the theory and the implementation of the proposed algorithm. Further the performance of the algorithm is evaluated on various application from the areas of regression, classification, and time seriese prediction.