Transparent thin film transistors by inkjet printing process

Thin Film Transistor (TFT) technology has contributed to the advancement of the display industry for the past decades. Nowadays, TFT technology has been widely applied in Active Matrix Liquid Crystal Display (AMLCD) and Active Matrix Organic Light Emitting Diode (AMOLED), etc. Oxide semiconductors,...

Full description

Saved in:
Bibliographic Details
Main Author: Myat Su Maung.
Other Authors: Sun Xiaowei
Format: Final Year Project
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10356/46124
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Thin Film Transistor (TFT) technology has contributed to the advancement of the display industry for the past decades. Nowadays, TFT technology has been widely applied in Active Matrix Liquid Crystal Display (AMLCD) and Active Matrix Organic Light Emitting Diode (AMOLED), etc. Oxide semiconductors, such as Indium Gallium Zinc Oxide (InGaZnO), because of its large bandgap and excellent physical and chemical properties, offer an alternative as the channel layer material for transparent TFT. IGZO is transparent in the visible region due to the large band gap and has a high mobility, even for an amorphous structure due to s-electron conduction. High mobility is essential for current-driving devices such as organic light-emitting diodes and for building integrated electronics/drivers for system-on-glass. Although TFTs fabricated using magnetron sputtering, atomic laser deposition and pulse laser deposition techniques have shown good performance, their process cost is still very high. Therefore, inkjet printing method was attempted to achieve low cost, high performance IGZO based TFTs. In this project, bottom-gate, bottom-contact IGZO based TFTs have been fabricated, the active layer was deposited using inkjet printing and Indium Tin Oxide was sputtered as electrode. By varying the thickness of the active layer and annealing temperatures, the TFT fabricated can achieve a current on-off ratio of 9.625E+05, field effect mobility of 0.493cm2 /V.s and threshold voltage of -4.3V. In this report, the effect of channel layer thickness on the performance of IGZO based TFT, impact of annealing temperatures and passivation are studied and discussed.