Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.

Hydroxyapatite (HA) coated titanium alloys are available as hard tissue implant material. However, the performance is not satisfactory due to insufficient short-term osseointegration and long-term stability of the implant. Studies show that cation incorporation (Mg) into HA resulted in better biolog...

Full description

Saved in:
Bibliographic Details
Main Author: Cai, Yanli.
Other Authors: Sam Zhang Shanyong
Format: Theses and Dissertations
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/10356/46450
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-46450
record_format dspace
spelling sg-ntu-dr.10356-464502023-03-11T17:40:06Z Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant. Cai, Yanli. Sam Zhang Shanyong School of Mechanical and Aerospace Engineering DRNTU::Engineering Hydroxyapatite (HA) coated titanium alloys are available as hard tissue implant material. However, the performance is not satisfactory due to insufficient short-term osseointegration and long-term stability of the implant. Studies show that cation incorporation (Mg) into HA resulted in better biological performances, i.e. short-term osseointegration, and anion incorporation (F) into HA decreased the dissolution rate and improved the adhesion strength, i.e. long-term stability. As such, a combination of good short-term osseointegration and long-term stability of the implant is achieved by properly incorporating both cation and anion into HA. This project aims at developing a bi-layer structured Mg and F ions co-substituted HA coating on Ti6Al4V substrate to achieve an integration of short-term osseointegration and long-term stability. Ca10-xMgx(PO4)6F1(OH)1 or MgxFHA in short, Ca9Mg1(PO4)6Fy(OH)(2-y) or MgFyHA in short, and the bi-layer structured HA (BHA in brief) coatings are deposited by a sol-gel dip-coating method. The compositional dependence of co-substitution of Mg and F ions is systematically studied on material structure, in vitro bioactivity, cell response, dissolution rate, and adhesion strength. The results show that as-deposited MgxFHA coatings have a single FHA phase when x ≤ 1.0. A small amount of Mg-substituted β-tricalcium phosphate (β-TCMP) appears together with FHA phase when 1.0 < x ≤ 2.0. The phases of as-deposited MgFyHA coatings depend on F concentration. Without F incorporation, β-TCMP is the main phase, and HA as the secondary phase. When y is 0.5, HA becomes the main phase and only a little β-TCMP presents. Single FHA phase forms when y ≥ 1.0. Grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red spectroscopy results indicate that Ca ions and OH groups in HA crystal structure are substituted with Mg and F ions, respectively. High Mg concentrations (1.0 ≤ x ≤ 2.0) in the MgxFHA coatings improve the in vitro bioactivity a lot. However, F concentration does not influence the bioactivity of the MgFyHA coatings. MG63 cells attach and spread well on all the MgxFHA and MgFyHA coatings. In the MgxFHA coatings, Mg ions show a significant stimulating effect on cell proliferation and late cell differentiation when x is 1.5. F concentration studied does not affect cell numbers grown on the MgFyHA coatings. However, it maintains a positive stimulating on cell differentiation. The incorporation of Mg increases the dissolution rate of MgxFHA coating in the tris-buffered saline (TBS) solution, and the maximum is achieved at x = 1.5. F incorporation decreases the dissolution rate of MgFyHA coating in the TBS solution, especially at the measured fluoridation degree of 0.72 – 1.16. Mg substitution enhances the adhesion strength, but comparable among different Mg concentrations. Greatly enhanced adhesion strength is achieved by F incorporation at the measured F concentration around 1.0. Finally, Mg1.5FHA/MgF1.5HA bi-layer structured HA coating is developed. Single FHA phase forms in the coating with the substitution of Mg and F ions in HA lattice. It shows comparable in vitro bioactivity with pure HA coating, but more significant cell proliferation. The long-term stability of the bi-layer structured HA coating is much better than pure HA coating, exhibiting lower dissolution rate and higher adhesion strength. DOCTOR OF PHILOSOPHY (MAE) 2011-12-06T03:37:04Z 2011-12-06T03:37:04Z 2011 2011 Thesis Cai, Y. L. (2011). Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/46450 10.32657/10356/46450 en 197 p. application/pdf application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Cai, Yanli.
Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
description Hydroxyapatite (HA) coated titanium alloys are available as hard tissue implant material. However, the performance is not satisfactory due to insufficient short-term osseointegration and long-term stability of the implant. Studies show that cation incorporation (Mg) into HA resulted in better biological performances, i.e. short-term osseointegration, and anion incorporation (F) into HA decreased the dissolution rate and improved the adhesion strength, i.e. long-term stability. As such, a combination of good short-term osseointegration and long-term stability of the implant is achieved by properly incorporating both cation and anion into HA. This project aims at developing a bi-layer structured Mg and F ions co-substituted HA coating on Ti6Al4V substrate to achieve an integration of short-term osseointegration and long-term stability. Ca10-xMgx(PO4)6F1(OH)1 or MgxFHA in short, Ca9Mg1(PO4)6Fy(OH)(2-y) or MgFyHA in short, and the bi-layer structured HA (BHA in brief) coatings are deposited by a sol-gel dip-coating method. The compositional dependence of co-substitution of Mg and F ions is systematically studied on material structure, in vitro bioactivity, cell response, dissolution rate, and adhesion strength. The results show that as-deposited MgxFHA coatings have a single FHA phase when x ≤ 1.0. A small amount of Mg-substituted β-tricalcium phosphate (β-TCMP) appears together with FHA phase when 1.0 < x ≤ 2.0. The phases of as-deposited MgFyHA coatings depend on F concentration. Without F incorporation, β-TCMP is the main phase, and HA as the secondary phase. When y is 0.5, HA becomes the main phase and only a little β-TCMP presents. Single FHA phase forms when y ≥ 1.0. Grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red spectroscopy results indicate that Ca ions and OH groups in HA crystal structure are substituted with Mg and F ions, respectively. High Mg concentrations (1.0 ≤ x ≤ 2.0) in the MgxFHA coatings improve the in vitro bioactivity a lot. However, F concentration does not influence the bioactivity of the MgFyHA coatings. MG63 cells attach and spread well on all the MgxFHA and MgFyHA coatings. In the MgxFHA coatings, Mg ions show a significant stimulating effect on cell proliferation and late cell differentiation when x is 1.5. F concentration studied does not affect cell numbers grown on the MgFyHA coatings. However, it maintains a positive stimulating on cell differentiation. The incorporation of Mg increases the dissolution rate of MgxFHA coating in the tris-buffered saline (TBS) solution, and the maximum is achieved at x = 1.5. F incorporation decreases the dissolution rate of MgFyHA coating in the TBS solution, especially at the measured fluoridation degree of 0.72 – 1.16. Mg substitution enhances the adhesion strength, but comparable among different Mg concentrations. Greatly enhanced adhesion strength is achieved by F incorporation at the measured F concentration around 1.0. Finally, Mg1.5FHA/MgF1.5HA bi-layer structured HA coating is developed. Single FHA phase forms in the coating with the substitution of Mg and F ions in HA lattice. It shows comparable in vitro bioactivity with pure HA coating, but more significant cell proliferation. The long-term stability of the bi-layer structured HA coating is much better than pure HA coating, exhibiting lower dissolution rate and higher adhesion strength.
author2 Sam Zhang Shanyong
author_facet Sam Zhang Shanyong
Cai, Yanli.
format Theses and Dissertations
author Cai, Yanli.
author_sort Cai, Yanli.
title Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
title_short Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
title_full Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
title_fullStr Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
title_full_unstemmed Simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on Ti6Al4V implant.
title_sort simultaneous incorporation of magnesium and fluorine ions in hydroxyapatite coatings on ti6al4v implant.
publishDate 2011
url https://hdl.handle.net/10356/46450
_version_ 1761781912730337280