Ultra wideband amplifier and pulse synthesizer design
The objective of this Ph.D. dissertation is to describe the design and implementation of two key components for ultra-wideband (UWB) wireless system. The first is a high gain and low noise amplifier (LNA) for the UWB receiver. The second is a novel distributed UWB pulse synthesizer for the UWB trans...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/46512 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-46512 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-465122023-07-04T17:39:04Z Ultra wideband amplifier and pulse synthesizer design Fang, Chao Law Choi Look School of Electrical and Electronic Engineering Positioning and Wireless Technology Centre DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio The objective of this Ph.D. dissertation is to describe the design and implementation of two key components for ultra-wideband (UWB) wireless system. The first is a high gain and low noise amplifier (LNA) for the UWB receiver. The second is a novel distributed UWB pulse synthesizer for the UWB transmitter. First, the background knowledge on UWB wireless system is presented. Literature review on various broadband circuit techniques such as the reactively matched circuit technique, feedback circuit technique, lossy match circuit technique and distributed circuit technique are conducted. Various distributed amplifier topologies such as the cascode distributed amplifier, capacitively-coupled distributed amplifier and cascaded single-stage distributed amplifier are also discussed. Previous published UWB LNA and Federal Communications Commission (FCC) compliance UWB pulse generation circuits are reviewed and the gaps are identified which forms the author’s research work. Subsequently, a 3.1-10.6 GHz UWB two–stage low noise amplifier based on 0.15-μm pHEMT technology is presented. The size of the fabricated UWB LNA is 0.9 mm x 2.5 mm = 2.25 mm2. The first stage of the LNA was designed by employing a resistive shunt feedback topology together with 2 T sections low pass structure in order to match to a 50-ohm antenna. At the same time this topology will improve the noise performance compared to the distributed input stage. The second stage is implemented in common source configuration in order to achieve higher power gain compared to common gate configuration. Finally, resistive output matching network is used to drive an external 50-ohm antenna. Current sharing among the transistors of the two stages is employed to reduce power consumption. Frequency domain measurement results show that the 3.1-10.6 GHz 0.15-μm pHEMT MMIC amplifier has state of the art performance consuming only 12.9 mW of power. DOCTOR OF PHILOSOPHY (EEE) 2011-12-13T04:55:17Z 2011-12-13T04:55:17Z 2011 2011 Thesis Chao, F. (2011). Ultra wideband amplifier and pulse synthesizer design. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/46512 10.32657/10356/46512 en 185 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio Fang, Chao Ultra wideband amplifier and pulse synthesizer design |
description |
The objective of this Ph.D. dissertation is to describe the design and implementation of two key components for ultra-wideband (UWB) wireless system. The first is a high gain and low noise amplifier (LNA) for the UWB receiver. The second is a novel distributed UWB pulse synthesizer for the UWB transmitter.
First, the background knowledge on UWB wireless system is presented. Literature review on various broadband circuit techniques such as the reactively matched circuit technique, feedback circuit technique, lossy match circuit technique and distributed circuit technique are conducted. Various distributed amplifier topologies such as the cascode distributed amplifier, capacitively-coupled distributed amplifier and cascaded single-stage distributed amplifier are also discussed. Previous published UWB LNA and Federal Communications Commission (FCC) compliance UWB pulse generation circuits are reviewed and the gaps are identified which forms the author’s research work.
Subsequently, a 3.1-10.6 GHz UWB two–stage low noise amplifier based on 0.15-μm pHEMT technology is presented. The size of the fabricated UWB LNA is 0.9 mm x 2.5 mm = 2.25 mm2. The first stage of the LNA was designed by employing a resistive shunt feedback topology together with 2 T sections low pass structure in order to match to a 50-ohm antenna. At the same time this topology will improve the noise performance compared to the distributed input stage. The second stage is implemented in common source configuration in order to achieve higher power gain compared to common gate configuration. Finally, resistive output matching network is used to drive an external 50-ohm antenna. Current sharing among the transistors of the two stages is employed to reduce power consumption. Frequency domain measurement results show that the 3.1-10.6 GHz 0.15-μm pHEMT MMIC amplifier has state of the art performance consuming only 12.9 mW of power. |
author2 |
Law Choi Look |
author_facet |
Law Choi Look Fang, Chao |
format |
Theses and Dissertations |
author |
Fang, Chao |
author_sort |
Fang, Chao |
title |
Ultra wideband amplifier and pulse synthesizer design |
title_short |
Ultra wideband amplifier and pulse synthesizer design |
title_full |
Ultra wideband amplifier and pulse synthesizer design |
title_fullStr |
Ultra wideband amplifier and pulse synthesizer design |
title_full_unstemmed |
Ultra wideband amplifier and pulse synthesizer design |
title_sort |
ultra wideband amplifier and pulse synthesizer design |
publishDate |
2011 |
url |
https://hdl.handle.net/10356/46512 |
_version_ |
1772828480261586944 |