Polynomial matrix decomposition using plane rotation

90 p.

Saved in:
Bibliographic Details
Main Author: Kongara Gangadhar.
Other Authors: Saman S Abeysekera
Format: Theses and Dissertations
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10356/47031
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
id sg-ntu-dr.10356-47031
record_format dspace
spelling sg-ntu-dr.10356-470312023-07-04T15:51:48Z Polynomial matrix decomposition using plane rotation Kongara Gangadhar. Saman S Abeysekera School of Electrical and Electronic Engineering DRNTU::Engineering 90 p. The polynomial matrix decomposition has many applications in the field of control, but in recent years they have also been used extensively in the area of digital signal processing and communications. Examples include adaptive array signal processing, MIMO and blind source separation. This dissertation tells about polynomial matrix decomposition using plane rotation for estimating the matrix of constant correlation matrix used in the blind source separation. Master of Science (Signal Processing) 2011-12-27T05:56:11Z 2011-12-27T05:56:11Z 2010 2010 Thesis http://hdl.handle.net/10356/47031 Nanyang Technological University application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Kongara Gangadhar.
Polynomial matrix decomposition using plane rotation
description 90 p.
author2 Saman S Abeysekera
author_facet Saman S Abeysekera
Kongara Gangadhar.
format Theses and Dissertations
author Kongara Gangadhar.
author_sort Kongara Gangadhar.
title Polynomial matrix decomposition using plane rotation
title_short Polynomial matrix decomposition using plane rotation
title_full Polynomial matrix decomposition using plane rotation
title_fullStr Polynomial matrix decomposition using plane rotation
title_full_unstemmed Polynomial matrix decomposition using plane rotation
title_sort polynomial matrix decomposition using plane rotation
publishDate 2011
url http://hdl.handle.net/10356/47031
_version_ 1772827155971964928