Nanostructured hydrated tungsten trioxide films for smart-window applications

Global warming is one major issue that the world is now trying to resolve taking into account its detrimental effects. One of the ways to reduce carbon emission is to lower the usage of air conditioning which can be realized by the installation of “smart windows” in buildings. With “smart windows”,...

Full description

Saved in:
Bibliographic Details
Main Author: Koh, Tien Wei.
Other Authors: Sun Xiaowei
Format: Final Year Project
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/47592
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Global warming is one major issue that the world is now trying to resolve taking into account its detrimental effects. One of the ways to reduce carbon emission is to lower the usage of air conditioning which can be realized by the installation of “smart windows” in buildings. With “smart windows”, one can benefit from not only comfort thermal conditions indoors but also a scenic view of the ambience which highly affects the ergonomics of occupants. Surprisingly, “smart windows” technology is still not extensively used worldwide today due to factors like high processing costs, unacceptable short lifespan and instability of the electrochromic device. In this project, we developed the growth of nanostructured hydrated tungsten trioxide films on transparent conductive substrates via a facile and low cost crystal-seed-assisted hydrothermal method. The structures, morphologies and electrochromic properties of as-grown films are investigated. Moreover, a single electrochromic layer device as well as a complementary one are fabricated, demonstrating improved performance.