M13 bacteriophage/single-walled carbon nanotube interactions for chirality selection and multifunctional materials

Filamentous M13 bacteriophages are excellent display systems and nanoscale building blocks. Single-walled carbon nanotubes (SWCNTs) have promising prospects in a wide range of applications, from molecular electronics to artificial muscles, owing to their fascinating electronic and mechanical proper...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yu, Ting
مؤلفون آخرون: Liao Kin
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/48035
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Filamentous M13 bacteriophages are excellent display systems and nanoscale building blocks. Single-walled carbon nanotubes (SWCNTs) have promising prospects in a wide range of applications, from molecular electronics to artificial muscles, owing to their fascinating electronic and mechanical properties. The interaction between these two novel materials was studied and exploited in this dissertation. In the first part of this thesis, phage display screening was performed for SWCNT chirality separation. Structural similarities of (7, 5) and (7, 6) binding peptides were found, such as high contents of aromatic amino acids, histidine as the head of peptides, and overall hydrophobicity, etc. The SWCNT-peptide interaction was further studied by molecular dynamics (MD) simulations to reveal the binding conformation and to calculate the binding energy. Peptide HSNWRVPSPWQL, which was selected by phage display screening and MD simulations, was able to disperse SWCNTs into small bundle and individual tubes and to preferentially disperse large-diameter SWCNTs. In the second part, M13 phages, as nanoscale building blocks, were fabricated into centimeter-long liquid-crystalline microfibers with inherent fluorescence by crosslinking reaction. SWCNTs and magnetic nanoparticles were added into the fibers as functional fillers. The multifunctional phage composite fibers, integrating fluorescence, electrical conductivity, magnetism, improved mechanical properties, biocompatibility, and surface functionalization sites, are promising all-in-one tools for carrying out different tasks in parallel.