Development of novel applications of optical amplifiers in optical communication networks

Optical amplifier is a key component in current and future optical communication networks. It can not only provide amplification to incoming optical signals but also serve as an all-optical signal processing component. There are three categories of optical amplifiers: doped fiber amplifier (mainly e...

Full description

Saved in:
Bibliographic Details
Main Author: Guo, Ning
Other Authors: Shum Ping
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/48047
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-48047
record_format dspace
spelling sg-ntu-dr.10356-480472023-07-04T16:58:54Z Development of novel applications of optical amplifiers in optical communication networks Guo, Ning Shum Ping School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Optical amplifier is a key component in current and future optical communication networks. It can not only provide amplification to incoming optical signals but also serve as an all-optical signal processing component. There are three categories of optical amplifiers: doped fiber amplifier (mainly erbium dope fiber amplifier (EDFA)), semiconductor optical amplifier (SOA) and Raman fiber amplifier (RFA). EDFA has larger gain, lower pump power and generally amplifies C and L band signals. While, SOA has medium gain, larger bandwidth, and higher noise figure. Most importantly, it has high nonlinearity which is very useful in all-optical signal processing. RFA requires larger pump power and has lower gain. But the bandwidth is flexible, which is determined bypump wavelength. And it has low noise figure comparing with the others. This thesis focuses on developing novel applications of optical amplifiers in future alloptical communication networks. A detailed study on SOA gain characteristics has been done to find the origin of discrepancy between experimental measurements and simulations results given by the well-known formula. Then a modified formula which includes an additional internal loss term is proposed. It shows more accurate description on SOA gain characteristics and is proved to be able to work with different SOAs. A novel configuration of all-optical switch utilizing nonlinear polarization rotation (NPR) in SOA is then proposed. And the switching of a data packet at 2.5 Gb/s is demonstrated experimentally with 20 dB extinction ration obtained. Furthermore, a novel configuration of fiber loop type all-optical buffer is proposed based on the switch. Theoretical investigation has been carried out to analyze buffering results of data packets mixed with microwave signal up to 40 GHz. Thus the parameters have been optimized to obtain a buffering time of 600 ns for 40 GHz microwave signal. Next, a hybrid C+L band pump which combines EDFA and RFA is presented. It utilizes residual pump power left from RFA for pumping of EDFA. Therefore, there is only one pumping laser diode (LD), so it is energy efficient. Moreover, an array of fiber bragg gratings (FBGs) together with dispersion compensating fiber (DCF) segments optimally compensates chromatic dispersion during transmission for all the C+L band channels. In addition, the gain fluctuation could be suppressed greatly from 6.5 dB to 0.2 dB by adjusting the reflectivities of individual FBG. DOCTOR OF PHILOSOPHY (EEE) 2012-02-27T02:56:47Z 2012-02-27T02:56:47Z 2011 2011 Thesis Guo, N. (2011). Development of novel applications of optical amplifiers in optical communication networks. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/48047 10.32657/10356/48047 en 138 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
Guo, Ning
Development of novel applications of optical amplifiers in optical communication networks
description Optical amplifier is a key component in current and future optical communication networks. It can not only provide amplification to incoming optical signals but also serve as an all-optical signal processing component. There are three categories of optical amplifiers: doped fiber amplifier (mainly erbium dope fiber amplifier (EDFA)), semiconductor optical amplifier (SOA) and Raman fiber amplifier (RFA). EDFA has larger gain, lower pump power and generally amplifies C and L band signals. While, SOA has medium gain, larger bandwidth, and higher noise figure. Most importantly, it has high nonlinearity which is very useful in all-optical signal processing. RFA requires larger pump power and has lower gain. But the bandwidth is flexible, which is determined bypump wavelength. And it has low noise figure comparing with the others. This thesis focuses on developing novel applications of optical amplifiers in future alloptical communication networks. A detailed study on SOA gain characteristics has been done to find the origin of discrepancy between experimental measurements and simulations results given by the well-known formula. Then a modified formula which includes an additional internal loss term is proposed. It shows more accurate description on SOA gain characteristics and is proved to be able to work with different SOAs. A novel configuration of all-optical switch utilizing nonlinear polarization rotation (NPR) in SOA is then proposed. And the switching of a data packet at 2.5 Gb/s is demonstrated experimentally with 20 dB extinction ration obtained. Furthermore, a novel configuration of fiber loop type all-optical buffer is proposed based on the switch. Theoretical investigation has been carried out to analyze buffering results of data packets mixed with microwave signal up to 40 GHz. Thus the parameters have been optimized to obtain a buffering time of 600 ns for 40 GHz microwave signal. Next, a hybrid C+L band pump which combines EDFA and RFA is presented. It utilizes residual pump power left from RFA for pumping of EDFA. Therefore, there is only one pumping laser diode (LD), so it is energy efficient. Moreover, an array of fiber bragg gratings (FBGs) together with dispersion compensating fiber (DCF) segments optimally compensates chromatic dispersion during transmission for all the C+L band channels. In addition, the gain fluctuation could be suppressed greatly from 6.5 dB to 0.2 dB by adjusting the reflectivities of individual FBG.
author2 Shum Ping
author_facet Shum Ping
Guo, Ning
format Theses and Dissertations
author Guo, Ning
author_sort Guo, Ning
title Development of novel applications of optical amplifiers in optical communication networks
title_short Development of novel applications of optical amplifiers in optical communication networks
title_full Development of novel applications of optical amplifiers in optical communication networks
title_fullStr Development of novel applications of optical amplifiers in optical communication networks
title_full_unstemmed Development of novel applications of optical amplifiers in optical communication networks
title_sort development of novel applications of optical amplifiers in optical communication networks
publishDate 2012
url https://hdl.handle.net/10356/48047
_version_ 1772828123982725120