Point-based nonrigid registration : application to object recognition and medical image registration

Image registration is an important problem in computer vision and has many diverse applications. Registration is the method of aligning two or more images into the same coordinate system to achieve a one-to-one correspondence. While registration of images has been studied in the past, an area that i...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad, Fahad Hameed
Other Authors: Jimmy Liu Jiang
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/48205
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-48205
record_format dspace
spelling sg-ntu-dr.10356-482052023-03-04T00:45:10Z Point-based nonrigid registration : application to object recognition and medical image registration Ahmad, Fahad Hameed Jimmy Liu Jiang Sudha Natarajan School of Computer Engineering Centre for High Performance Embedded Systems DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Image registration is an important problem in computer vision and has many diverse applications. Registration is the method of aligning two or more images into the same coordinate system to achieve a one-to-one correspondence. While registration of images has been studied in the past, an area that is less explored is nonrigid registration. It turns out that nonrigid registration is very appropriate when complex deformations are involved. In this thesis, we focus on point-based nonrigid registration and develop algorithms for solving nonrigid registration problems. With nonrigid registration as the goal, new point-based shape descriptor for object classification has been developed. The shape descriptor is based on principal curvatures and their directions. High curvature boundary points are first extracted in a multi-scale environment. The shape descriptor is then extracted by taking the k nearest neighborhood boundary points around a point of interest and calculating the central moments of the distribution of different properties of these neighborhood points. The choice of scale and the number of nearest neighbors provides a global as well as a local description of the neighborhood. Compared to previous techniques for shape matching and classification, experiments show that the proposed algorithm is more robust to deformation and invariant to rotation, scaling and translation. We also present a robust registration method based on geometric invariant features using multiscale weighted quaternion sub-division. The geometric invariant features are based on selective crest points which are robust to deformation. The k-nearest neighbor approach combined with multi-scale provides a new adaptive method for collecting features. The size of the neighborhood is increased if fewer features are present and is decreased when features are abundant. A feature of quaternion fitting approach is that it provides a fast method for registering points during sub-division registration, and the associated feature weights help remove any outlier effect on the result of the registration. A rigid body deformable registration scheme is also presented which is robust to noise, intensity variation and missing features. Hausdorff distance has been used as a similarity measure. The registration technique focuses on multi-modal medical images which have significant intensity variations and different levels of SNR. A huge amount of feature mismatch is also present between modalities as different modalities depict different tissues differently. We have analyzed the robustness and sensitivity of our algorithm with respect to various CT and MRI images of different quality. MASTER OF ENGINEERING (SCE) 2012-03-28T08:51:16Z 2012-03-28T08:51:16Z 2012 2012 Thesis Ahmad, F. H. (2012). Point-based nonrigid registration : application to object recognition and medical image registration. Master’s thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/48205 10.32657/10356/48205 en 86 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision
spellingShingle DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision
Ahmad, Fahad Hameed
Point-based nonrigid registration : application to object recognition and medical image registration
description Image registration is an important problem in computer vision and has many diverse applications. Registration is the method of aligning two or more images into the same coordinate system to achieve a one-to-one correspondence. While registration of images has been studied in the past, an area that is less explored is nonrigid registration. It turns out that nonrigid registration is very appropriate when complex deformations are involved. In this thesis, we focus on point-based nonrigid registration and develop algorithms for solving nonrigid registration problems. With nonrigid registration as the goal, new point-based shape descriptor for object classification has been developed. The shape descriptor is based on principal curvatures and their directions. High curvature boundary points are first extracted in a multi-scale environment. The shape descriptor is then extracted by taking the k nearest neighborhood boundary points around a point of interest and calculating the central moments of the distribution of different properties of these neighborhood points. The choice of scale and the number of nearest neighbors provides a global as well as a local description of the neighborhood. Compared to previous techniques for shape matching and classification, experiments show that the proposed algorithm is more robust to deformation and invariant to rotation, scaling and translation. We also present a robust registration method based on geometric invariant features using multiscale weighted quaternion sub-division. The geometric invariant features are based on selective crest points which are robust to deformation. The k-nearest neighbor approach combined with multi-scale provides a new adaptive method for collecting features. The size of the neighborhood is increased if fewer features are present and is decreased when features are abundant. A feature of quaternion fitting approach is that it provides a fast method for registering points during sub-division registration, and the associated feature weights help remove any outlier effect on the result of the registration. A rigid body deformable registration scheme is also presented which is robust to noise, intensity variation and missing features. Hausdorff distance has been used as a similarity measure. The registration technique focuses on multi-modal medical images which have significant intensity variations and different levels of SNR. A huge amount of feature mismatch is also present between modalities as different modalities depict different tissues differently. We have analyzed the robustness and sensitivity of our algorithm with respect to various CT and MRI images of different quality.
author2 Jimmy Liu Jiang
author_facet Jimmy Liu Jiang
Ahmad, Fahad Hameed
format Theses and Dissertations
author Ahmad, Fahad Hameed
author_sort Ahmad, Fahad Hameed
title Point-based nonrigid registration : application to object recognition and medical image registration
title_short Point-based nonrigid registration : application to object recognition and medical image registration
title_full Point-based nonrigid registration : application to object recognition and medical image registration
title_fullStr Point-based nonrigid registration : application to object recognition and medical image registration
title_full_unstemmed Point-based nonrigid registration : application to object recognition and medical image registration
title_sort point-based nonrigid registration : application to object recognition and medical image registration
publishDate 2012
url https://hdl.handle.net/10356/48205
_version_ 1759856335214608384