All-optical processing technologies for next generation optical networks

All-optical processing technologies are highly desirable for next generation optical networks because they can resolve the electrical bottleneck issues. All-optical processing technologies span many research areas, which include optical buffering, optical logic gates, optical wavelength conversion/m...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Dawei
Other Authors: Cheng Tee Hiang
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/48247
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:All-optical processing technologies are highly desirable for next generation optical networks because they can resolve the electrical bottleneck issues. All-optical processing technologies span many research areas, which include optical buffering, optical logic gates, optical wavelength conversion/multicasting, optical signal regeneration, ultra-fast optical switching, optical signal modulation format conversion, de-multiplexing of optical time division multiplexing (OTDM) signal, optical data exchange, and etc. This thesis focuses on two aspects of all-optical processing technologies; namely, optical buffering and wavelength multicasting. First, we experimentally demonstrated an optically controlled loop buffer, which utilized a semiconductor optical amplifier (SOA)-based loop mirror as a fast switch to realize the writing and reading of optical data packets within this buffer and a circulator-based optical reflector to achieve internal re-circulations. According to the experimental results, the proposed loop buffer has better performance in terms of number of achievable re-circulations, compared to other similar loop buffer structures. In addition, the number of re-circulations can be significantly increased while maintaining acceptable performance degradation by using negative instead of positive control method.