Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer

Glaucoma is a group of ocular disease where the fluid pressure is elevated beyond the limit, causing irreversible damage to the optic nerve which eventually leads to a loss of vision. Glaucoma Drainage Device (GDD) is implanted when other medical treatments were ineffective in managing the disease....

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Brenda Si Ying.
Other Authors: Subramanian Venkatraman
Format: Final Year Project
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/48411
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-48411
record_format dspace
spelling sg-ntu-dr.10356-484112023-03-04T15:37:59Z Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer Ong, Brenda Si Ying. Subramanian Venkatraman School of Materials Science and Engineering DRNTU::Engineering::Materials::Biomaterials Glaucoma is a group of ocular disease where the fluid pressure is elevated beyond the limit, causing irreversible damage to the optic nerve which eventually leads to a loss of vision. Glaucoma Drainage Device (GDD) is implanted when other medical treatments were ineffective in managing the disease. To avoid post-surgery complication of hypotony and ocular hypertension, a biodegradable valve is to be integrated into the GDD. The biodegradable material for the valve will be required to retain its mechanical properties for the first few weeks after surgery and yet fully disintegrate after 6 weeks. Therefore, the influence of electron-beam (e-beam) irradiation of in-vitro hydrolytic degradation of poly(DL-lactide-co-ε-caprolactone) 70/30 (PLC) were studied in this report. Solvent-casted PLC films were irradiated at 10, 20 and 30 Mrad. Subsequently, PLC samples were immersed in phosphate buffer saline (PBS) solution and incubated at 37ºC for a period of 6 weeks. Several characterization tests were carried out weekly to understand the degradation behavior. Upon e-beam radiation on PLC, Mn of PLC decreases. Despite a decrease in Mn with increasing radiation dosage, ΔHm and Tg decreased gradually. This is due to the combined effect of chain scission and crosslinking initiated by e-beam radiation. At 10 and 20Mrad e-beam radiation, crosslinking predominates and hence, tensile strain and Young’s modulus of PLC increased slightly. However, at higher e-beam radiation dosage of 30 and 40Mrad, chain scission predominates which results in a decrease in tensile strain and significant drop of Young’s modulus to less than 2.5MPa. During 6 weeks of degradation, molecular weight, tensile strain and Young’s modulus of non-radiated and radiated PLC had an overall decrease. The molecular weight and Young’s modulus was affected by the efficiency of oligomer removal. At 10 and 20Mrad, cross-linking predominates and hence oligomers are not removed from PLC. However, at 30 and 40Mrad, chain scission predominates and thus, oligomers were efficiently removed. In conclusion, PLC radiated at 20Mrad displayed unique characteristics such as retention of Young’s modulus in the first few weeks of degradation and difference degradation mechanism from other PLC samples. Bachelor of Engineering (Materials Engineering) 2012-04-17T06:49:46Z 2012-04-17T06:49:46Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/48411 en Nanyang Technological University 50 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Biomaterials
spellingShingle DRNTU::Engineering::Materials::Biomaterials
Ong, Brenda Si Ying.
Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
description Glaucoma is a group of ocular disease where the fluid pressure is elevated beyond the limit, causing irreversible damage to the optic nerve which eventually leads to a loss of vision. Glaucoma Drainage Device (GDD) is implanted when other medical treatments were ineffective in managing the disease. To avoid post-surgery complication of hypotony and ocular hypertension, a biodegradable valve is to be integrated into the GDD. The biodegradable material for the valve will be required to retain its mechanical properties for the first few weeks after surgery and yet fully disintegrate after 6 weeks. Therefore, the influence of electron-beam (e-beam) irradiation of in-vitro hydrolytic degradation of poly(DL-lactide-co-ε-caprolactone) 70/30 (PLC) were studied in this report. Solvent-casted PLC films were irradiated at 10, 20 and 30 Mrad. Subsequently, PLC samples were immersed in phosphate buffer saline (PBS) solution and incubated at 37ºC for a period of 6 weeks. Several characterization tests were carried out weekly to understand the degradation behavior. Upon e-beam radiation on PLC, Mn of PLC decreases. Despite a decrease in Mn with increasing radiation dosage, ΔHm and Tg decreased gradually. This is due to the combined effect of chain scission and crosslinking initiated by e-beam radiation. At 10 and 20Mrad e-beam radiation, crosslinking predominates and hence, tensile strain and Young’s modulus of PLC increased slightly. However, at higher e-beam radiation dosage of 30 and 40Mrad, chain scission predominates which results in a decrease in tensile strain and significant drop of Young’s modulus to less than 2.5MPa. During 6 weeks of degradation, molecular weight, tensile strain and Young’s modulus of non-radiated and radiated PLC had an overall decrease. The molecular weight and Young’s modulus was affected by the efficiency of oligomer removal. At 10 and 20Mrad, cross-linking predominates and hence oligomers are not removed from PLC. However, at 30 and 40Mrad, chain scission predominates and thus, oligomers were efficiently removed. In conclusion, PLC radiated at 20Mrad displayed unique characteristics such as retention of Young’s modulus in the first few weeks of degradation and difference degradation mechanism from other PLC samples.
author2 Subramanian Venkatraman
author_facet Subramanian Venkatraman
Ong, Brenda Si Ying.
format Final Year Project
author Ong, Brenda Si Ying.
author_sort Ong, Brenda Si Ying.
title Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
title_short Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
title_full Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
title_fullStr Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
title_full_unstemmed Influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
title_sort influence of electron-beam irradiation on in-vitro hydrolytic degradation of biodegradable polymer
publishDate 2012
url http://hdl.handle.net/10356/48411
_version_ 1759854478651031552