Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients

Fourier analysis is an invaluable tool to engineers and scientists since a wide range of physical phenomena have been modeled using the classical theory of Fourier series and transforms. Spherical Harmonics for data defined on a sphere (e.g the temperature on the surface of the earth) is th...

Full description

Saved in:
Bibliographic Details
Main Author: Aditya Bansal
Other Authors: School of Computer Engineering
Format: Final Year Project
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/48535
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-48535
record_format dspace
spelling sg-ntu-dr.10356-485352023-03-03T20:36:41Z Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients Aditya Bansal School of Computer Engineering Game Lab Ramakrishna Kakarala DRNTU::Science::Mathematics::Analysis Fourier analysis is an invaluable tool to engineers and scientists since a wide range of physical phenomena have been modeled using the classical theory of Fourier series and transforms. Spherical Harmonics for data defined on a sphere (e.g the temperature on the surface of the earth) is the natural spherical equivalent of the planar Fourier transform. The spherical harmonics form a countable orthonormal basis for square integrable functions on the sphere. Associated with each basis function is an order L, a nonnegative integer analogous to frequency. In 3D computer graphics, spherical harmonics play a special role in a wide variety of topics including indirect lighting (ambient occlusion, global illumination, pre-computed radiance transfer, etc.) and recognition of 3D shapes. This project aims to explore the distribution of the magnitude and phase of the Spherical Harmonic coefficients using the Princeton shape benchmark as the test data set. This analysis can help address issues such as the degree upto which one might need to find the Spherical Harmonic coefficients in order to represent real-world objects to a sufficient level of accuracy. Bachelor of Engineering (Computer Science) 2012-04-26T01:09:01Z 2012-04-26T01:09:01Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/48535 en Nanyang Technological University 70 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Mathematics::Analysis
spellingShingle DRNTU::Science::Mathematics::Analysis
Aditya Bansal
Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
description Fourier analysis is an invaluable tool to engineers and scientists since a wide range of physical phenomena have been modeled using the classical theory of Fourier series and transforms. Spherical Harmonics for data defined on a sphere (e.g the temperature on the surface of the earth) is the natural spherical equivalent of the planar Fourier transform. The spherical harmonics form a countable orthonormal basis for square integrable functions on the sphere. Associated with each basis function is an order L, a nonnegative integer analogous to frequency. In 3D computer graphics, spherical harmonics play a special role in a wide variety of topics including indirect lighting (ambient occlusion, global illumination, pre-computed radiance transfer, etc.) and recognition of 3D shapes. This project aims to explore the distribution of the magnitude and phase of the Spherical Harmonic coefficients using the Princeton shape benchmark as the test data set. This analysis can help address issues such as the degree upto which one might need to find the Spherical Harmonic coefficients in order to represent real-world objects to a sufficient level of accuracy.
author2 School of Computer Engineering
author_facet School of Computer Engineering
Aditya Bansal
format Final Year Project
author Aditya Bansal
author_sort Aditya Bansal
title Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
title_short Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
title_full Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
title_fullStr Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
title_full_unstemmed Experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
title_sort experimental investigation on distribution of phase and magnitude of spherical harmonic coefficients
publishDate 2012
url http://hdl.handle.net/10356/48535
_version_ 1759853596358213632