Automated control programs for characterizations of quantum cascade lasers.
In this Final Year Project, some LabVIEW programs were developed in order to automatically control the experimental instruments used for characterizing the quantum cascade laser (QCL) devices. QCL is a semiconductor laser which typically emits in the mid- to far-infrared and THz region of the electr...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/49069 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-49069 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-490692023-02-28T23:11:05Z Automated control programs for characterizations of quantum cascade lasers. Phann Sophearin. School of Physical and Mathematical Sciences Wang Qijie DRNTU::Science::Physics::Optics and light In this Final Year Project, some LabVIEW programs were developed in order to automatically control the experimental instruments used for characterizing the quantum cascade laser (QCL) devices. QCL is a semiconductor laser which typically emits in the mid- to far-infrared and THz region of the electromagnetic spectrum. While the typical interband semiconductor lasers emit electromagnetic radiation through the recombination of electron-hole pairs across the material bandgap, the QCLs are unipolar with its emission being achieved through the use of intersubband transitions in a repeated stack of semiconductor multiple quantum well heterostructure.The purpose of the automation control programs is to make the process of this device characterization more efficient and accurate and consume less time as compared to the conventional, manual characterization where automating instrument control is not available. The programs were developed using National Instruments’ LabVIEW 2009 application, a graphic-based programming environment widely used for instrument control. Three main control programs were developed in this project; two of them are for the Power-Current-Voltage (L-I-V) characteristics with two different types of pulse generator, while the other one is for the far-field characteristics of the QCL device. Bachelor of Science in Physics 2012-05-14T07:56:55Z 2012-05-14T07:56:55Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/49069 en 81 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics::Optics and light |
spellingShingle |
DRNTU::Science::Physics::Optics and light Phann Sophearin. Automated control programs for characterizations of quantum cascade lasers. |
description |
In this Final Year Project, some LabVIEW programs were developed in order to automatically control the experimental instruments used for characterizing the quantum cascade laser (QCL) devices. QCL is a semiconductor laser which typically emits in the mid- to far-infrared and THz region of the electromagnetic spectrum. While the typical interband semiconductor lasers emit electromagnetic radiation through the recombination of electron-hole pairs across the material bandgap, the QCLs are unipolar with its emission being achieved through the use of intersubband transitions in a repeated stack of semiconductor multiple quantum well heterostructure.The purpose of the automation control programs is to make the process of this device characterization more efficient and accurate and consume less time as compared to the conventional, manual characterization where automating instrument control is not available. The programs were developed using National Instruments’ LabVIEW 2009 application, a graphic-based programming environment widely used for instrument control. Three main control programs were developed in this project; two of them are for the Power-Current-Voltage (L-I-V) characteristics with two different types of pulse generator, while the other one is for the far-field characteristics of the QCL device. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Phann Sophearin. |
format |
Final Year Project |
author |
Phann Sophearin. |
author_sort |
Phann Sophearin. |
title |
Automated control programs for characterizations of quantum cascade lasers. |
title_short |
Automated control programs for characterizations of quantum cascade lasers. |
title_full |
Automated control programs for characterizations of quantum cascade lasers. |
title_fullStr |
Automated control programs for characterizations of quantum cascade lasers. |
title_full_unstemmed |
Automated control programs for characterizations of quantum cascade lasers. |
title_sort |
automated control programs for characterizations of quantum cascade lasers. |
publishDate |
2012 |
url |
http://hdl.handle.net/10356/49069 |
_version_ |
1759853088227721216 |