Experimental study of buoy-type wave energy convertors
Global warming has been the attention for several years now in the environment engineering industries. Essentially, it is primarily due to the combustion of coal and fuel. Another major concern for these non-renewable sources of energy is that they are slowly depleting. The human demand and consumpt...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/49794 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-49794 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-497942023-03-03T17:04:33Z Experimental study of buoy-type wave energy convertors Chan, Si Chyi. Huang Zhenhua School of Civil and Environmental Engineering DRNTU::Engineering::Civil engineering::Water resources DRNTU::Engineering::Mechanical engineering::Alternative, renewable energy sources Global warming has been the attention for several years now in the environment engineering industries. Essentially, it is primarily due to the combustion of coal and fuel. Another major concern for these non-renewable sources of energy is that they are slowly depleting. The human demand and consumption rate is far much higher than the regeneration rate. Thus the introduction of renewable energy resources such as solar, wind, hydropower and geothermal energy has become a focal point. By definition, renewable resource is “a substance of economic value that can be replaced or replenished in the same amount or less time as it takes to draw the supply down” (Investopedia ULC, 2012).This report is divided into two major parts. Besides the introduction, characteristics of a wave and the literature review of all types of wave energy convertors in chapter 1, 2 and 3 respectively, the first experimental study is on the feasibility of a buoy type WEC by employing a model. Principally, the number of revolutions of the rotating shaft fixed on the semi floating model exhibits a general idea that under a constant wave conditions such as the ocean, the WEC can rotate continuously and the stored wave energy can be converted into potential electrical energy with a rotor-stator mechanism is attached to it, and that brings the Project to the second major part. Bachelor of Engineering (Environmental Engineering) 2012-05-24T03:53:07Z 2012-05-24T03:53:07Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/49794 en Nanyang Technological University 50 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Civil engineering::Water resources DRNTU::Engineering::Mechanical engineering::Alternative, renewable energy sources |
spellingShingle |
DRNTU::Engineering::Civil engineering::Water resources DRNTU::Engineering::Mechanical engineering::Alternative, renewable energy sources Chan, Si Chyi. Experimental study of buoy-type wave energy convertors |
description |
Global warming has been the attention for several years now in the environment engineering industries. Essentially, it is primarily due to the combustion of coal and fuel. Another major concern for these non-renewable sources of energy is that they are slowly depleting. The human demand and consumption rate is far much higher than the regeneration rate.
Thus the introduction of renewable energy resources such as solar, wind, hydropower and geothermal energy has become a focal point. By definition, renewable resource is “a substance of economic value that can be replaced or replenished in the same amount or less time as it takes to draw the supply down” (Investopedia ULC, 2012).This report is divided into two major parts. Besides the introduction, characteristics of a wave and the literature review of all types of wave energy convertors in chapter 1, 2 and 3 respectively, the first experimental study is on the feasibility of a buoy type WEC by employing a model. Principally, the number of revolutions of the rotating shaft fixed on the semi floating model exhibits a general idea that under a constant wave conditions such as the ocean, the WEC can rotate continuously and the stored wave energy can be converted into potential electrical energy with a rotor-stator mechanism is attached to it, and that brings the Project to the second major part. |
author2 |
Huang Zhenhua |
author_facet |
Huang Zhenhua Chan, Si Chyi. |
format |
Final Year Project |
author |
Chan, Si Chyi. |
author_sort |
Chan, Si Chyi. |
title |
Experimental study of buoy-type wave energy convertors |
title_short |
Experimental study of buoy-type wave energy convertors |
title_full |
Experimental study of buoy-type wave energy convertors |
title_fullStr |
Experimental study of buoy-type wave energy convertors |
title_full_unstemmed |
Experimental study of buoy-type wave energy convertors |
title_sort |
experimental study of buoy-type wave energy convertors |
publishDate |
2012 |
url |
http://hdl.handle.net/10356/49794 |
_version_ |
1759853939721764864 |