Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams

Phthalonitrile based polymers have been intensively and persistently studied over the past few decades due to their potential as high temperature (HT) resistant thermoset. All studies so far emphasised on the resin formulation as HT matrices. This study focused on understanding the detailed structur...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Ming
Other Authors: Hu Xiao
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/49904
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-49904
record_format dspace
spelling sg-ntu-dr.10356-499042023-03-04T16:35:44Z Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams Liu, Ming Hu Xiao School of Materials Science & Engineering DRNTU::Engineering::Materials::Nanostructured materials Phthalonitrile based polymers have been intensively and persistently studied over the past few decades due to their potential as high temperature (HT) resistant thermoset. All studies so far emphasised on the resin formulation as HT matrices. This study focused on understanding the detailed structural formation responsible for the superior thermal properties of resorcinol-based phthalonitrile (RPh) polymer and extending its applications as organic precursors for carbon materials and resin for ultra-low density HT foams. High crosslinking density was essential in order to acquire the exceptional thermal performances, although Fourier Transform Infrared Spectroscopy indicated the formation of less thermally stable linear structure formation at high curing additive content. It was proposed that the trapping of the linear chains inside the cavities of the aromatic heterocyclic structures formed a highly crosslinked and thermally resistant system. Systematic studies on kinetic of curing and degradation further supported the hypothesis. The 86% char yield at 800 C makes RPh an excellent carbon precursor. The results showed that the carbon films obtained through pyrolysis of RPh precursor were smooth and crack free, exhibiting excellent mechanical robustness and integrity which were comparable or even surpassed the carbon films obtained from epoxy or pitch. The obtained bulk electrical conductivity of 87 S/cm made RPh carbon film a potential candidate for electronic applications. RPh foams were prepared for the first time via a synchronized single step gelation-foaming process based on the established resin viscosity profile and chemical blowing agent gas liberation. The density could be precisely controlled with the lowest obtainable density of 0.04 g/cm3. Well-distributed closed cells were obtained. The RPh foams showed excellent short and long term thermal stability and strength retention (>90%) after thermal aging at 280 °C for 100 hours in air which surpassed any reported polymer foams. Three types of nanofillers with distinct aspect ratios, 0D fumed silica (FS), 1D multiwall carbon nanotubes (MWNT) and 2D expanded graphite nanosheets (GH) were selected for nanocomposite foam preparation. Results showed the nanofillers functioned as nucleation agents, rheological modifiers and reinforcement fillers. The cell density was increased by 3 orders of magnitude and the cell size distribution was narrowed. Unique ‘cage-like’ structures consisted of closed cells interconnected by microvoids were obtained. The formation of physical gel upon MWNT made foaming possible when synchronization of gelation and gas liberation cannot be established. Three fillers were found to provide varying levels of enhancement of the nanocomposite foam properties with GH being the most effective filler. Reinforcement mechanisms were proposed to explain the findings. DOCTOR OF PHILOSOPHY (MSE) 2012-05-25T06:06:42Z 2012-05-25T06:06:42Z 2012 2012 Thesis Liu, M. (2012). Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/49904 10.32657/10356/49904 en 147 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Nanostructured materials
spellingShingle DRNTU::Engineering::Materials::Nanostructured materials
Liu, Ming
Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
description Phthalonitrile based polymers have been intensively and persistently studied over the past few decades due to their potential as high temperature (HT) resistant thermoset. All studies so far emphasised on the resin formulation as HT matrices. This study focused on understanding the detailed structural formation responsible for the superior thermal properties of resorcinol-based phthalonitrile (RPh) polymer and extending its applications as organic precursors for carbon materials and resin for ultra-low density HT foams. High crosslinking density was essential in order to acquire the exceptional thermal performances, although Fourier Transform Infrared Spectroscopy indicated the formation of less thermally stable linear structure formation at high curing additive content. It was proposed that the trapping of the linear chains inside the cavities of the aromatic heterocyclic structures formed a highly crosslinked and thermally resistant system. Systematic studies on kinetic of curing and degradation further supported the hypothesis. The 86% char yield at 800 C makes RPh an excellent carbon precursor. The results showed that the carbon films obtained through pyrolysis of RPh precursor were smooth and crack free, exhibiting excellent mechanical robustness and integrity which were comparable or even surpassed the carbon films obtained from epoxy or pitch. The obtained bulk electrical conductivity of 87 S/cm made RPh carbon film a potential candidate for electronic applications. RPh foams were prepared for the first time via a synchronized single step gelation-foaming process based on the established resin viscosity profile and chemical blowing agent gas liberation. The density could be precisely controlled with the lowest obtainable density of 0.04 g/cm3. Well-distributed closed cells were obtained. The RPh foams showed excellent short and long term thermal stability and strength retention (>90%) after thermal aging at 280 °C for 100 hours in air which surpassed any reported polymer foams. Three types of nanofillers with distinct aspect ratios, 0D fumed silica (FS), 1D multiwall carbon nanotubes (MWNT) and 2D expanded graphite nanosheets (GH) were selected for nanocomposite foam preparation. Results showed the nanofillers functioned as nucleation agents, rheological modifiers and reinforcement fillers. The cell density was increased by 3 orders of magnitude and the cell size distribution was narrowed. Unique ‘cage-like’ structures consisted of closed cells interconnected by microvoids were obtained. The formation of physical gel upon MWNT made foaming possible when synchronization of gelation and gas liberation cannot be established. Three fillers were found to provide varying levels of enhancement of the nanocomposite foam properties with GH being the most effective filler. Reinforcement mechanisms were proposed to explain the findings.
author2 Hu Xiao
author_facet Hu Xiao
Liu, Ming
format Theses and Dissertations
author Liu, Ming
author_sort Liu, Ming
title Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
title_short Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
title_full Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
title_fullStr Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
title_full_unstemmed Aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
title_sort aromatic heterocyclic resin : precursor for carbon materials and high temperature foams
publishDate 2012
url https://hdl.handle.net/10356/49904
_version_ 1759856972804390912