Image processing and analysis of microscopy images of red blood cells.

The flickering phenomenon of red blood cell (RBC) was discovered back in the 18th century. Flicker is defined as the spontaneous rhythmical and random alterations through a healthy RBC’s volume on a scale of 1-100 nanometers. This phenomenon is related to RBC’s deformability and its membrane mechani...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Soh, Wei Ting.
مؤلفون آخرون: Bjoern Holger Neu
التنسيق: Final Year Project
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/49924
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The flickering phenomenon of red blood cell (RBC) was discovered back in the 18th century. Flicker is defined as the spontaneous rhythmical and random alterations through a healthy RBC’s volume on a scale of 1-100 nanometers. This phenomenon is related to RBC’s deformability and its membrane mechanics. Therefore, it is important to understand this phenomenon in order to study the pathological conditions of RBC. Hence, in this project, a digitized phase contrast microscopy video of a single red blood cell was analyzed using image processing techniques to study the flickering motion by segmenting the RBC and derive the subpixel edge position. Image processing techniques were developed using ImageJ, ITK SNAP and MATLAB. The subpixel edge position at multiple points, each 1° apart on the periphery of the RBC was calculated using the pixel positions orthogonal to the edge. From the results of subpixel edge position, the flickering phenomenon discovered a few centuries ago was verified and several parameters were calculated. The frequency range of flickering is from 0.1Hz to 7.2Hz and the amplitude of fluctuation of the RBC membrane is from 22nm to 176nm.