Modeling and optimization of building HVAC systems

This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based optimization approach for building heating, ventilating, and air conditioning (HVAC) systems, espe...

Full description

Saved in:
Bibliographic Details
Main Author: Jin, Guang Yu
Other Authors: Cai Wenjian
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/49960
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-49960
record_format dspace
spelling sg-ntu-dr.10356-499602023-07-04T16:55:13Z Modeling and optimization of building HVAC systems Jin, Guang Yu Cai Wenjian School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based optimization approach for building heating, ventilating, and air conditioning (HVAC) systems, especially for the outbuilding section. Firstly, through component characteristic analysis, hybrid HVAC component models associated with cooling loads, operating variables and energy consumption characteristics for heat exchangers and energy consuming devices are established. All the model parameters can be derived from manufacturers’ specification data or on-site testing and measurement data. Secondly, the nonlinear constraint optimization problem for HVAC out-building section which consists of a refrigeration cycle and a condenser water loop is formulated by considering the system level and component level characteristics and interactions among all components and their associated variables. The optimization of both the refrigeration cycle and the condenser water loop is realized using a PSO based optimizer, with the target of minimizing the total power consumption of the HVAC system. Simulation studies of the proposed system optimization approach are conducted to compare the control accuracy, computation time and memory requirement of the proposed PSO based optimizer with those of the GA based optimizer using the same models. The results show that the system optimization approach using PSO based optimizer is able to achieve the same control accuracy yet requiring less computation time and memory compared to the system optimization approach using a GA based optimizer. Then the proposed hybrid model-based system optimization approach using a PSO based optimizer is implemented in the laboratorial centralized HVAC system to validate and evaluate the energy performance of the proposed method compare to traditional ones. The results of experimental tests show that the proposed method indeed improves the system performance significantly. The main contribution of this thesis is to propose hybrid modeling methodologies to predict the steady-state as well as the transient performance of the HVAC component, which is the prerequisite for model-based control and optimization; and to develop a general feasible model-based system optimization approach to systematically optimize the energy consumption of a HVAC system out-building section instead of optimizing its individual components. DOCTOR OF PHILOSOPHY (EEE) 2012-05-25T08:24:59Z 2012-05-25T08:24:59Z 2011 2011 Thesis Jin, G. Y. (2011). Modeling and optimization of building HVAC systems. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/49960 10.32657/10356/49960 en 203 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Control engineering
Jin, Guang Yu
Modeling and optimization of building HVAC systems
description This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based optimization approach for building heating, ventilating, and air conditioning (HVAC) systems, especially for the outbuilding section. Firstly, through component characteristic analysis, hybrid HVAC component models associated with cooling loads, operating variables and energy consumption characteristics for heat exchangers and energy consuming devices are established. All the model parameters can be derived from manufacturers’ specification data or on-site testing and measurement data. Secondly, the nonlinear constraint optimization problem for HVAC out-building section which consists of a refrigeration cycle and a condenser water loop is formulated by considering the system level and component level characteristics and interactions among all components and their associated variables. The optimization of both the refrigeration cycle and the condenser water loop is realized using a PSO based optimizer, with the target of minimizing the total power consumption of the HVAC system. Simulation studies of the proposed system optimization approach are conducted to compare the control accuracy, computation time and memory requirement of the proposed PSO based optimizer with those of the GA based optimizer using the same models. The results show that the system optimization approach using PSO based optimizer is able to achieve the same control accuracy yet requiring less computation time and memory compared to the system optimization approach using a GA based optimizer. Then the proposed hybrid model-based system optimization approach using a PSO based optimizer is implemented in the laboratorial centralized HVAC system to validate and evaluate the energy performance of the proposed method compare to traditional ones. The results of experimental tests show that the proposed method indeed improves the system performance significantly. The main contribution of this thesis is to propose hybrid modeling methodologies to predict the steady-state as well as the transient performance of the HVAC component, which is the prerequisite for model-based control and optimization; and to develop a general feasible model-based system optimization approach to systematically optimize the energy consumption of a HVAC system out-building section instead of optimizing its individual components.
author2 Cai Wenjian
author_facet Cai Wenjian
Jin, Guang Yu
format Theses and Dissertations
author Jin, Guang Yu
author_sort Jin, Guang Yu
title Modeling and optimization of building HVAC systems
title_short Modeling and optimization of building HVAC systems
title_full Modeling and optimization of building HVAC systems
title_fullStr Modeling and optimization of building HVAC systems
title_full_unstemmed Modeling and optimization of building HVAC systems
title_sort modeling and optimization of building hvac systems
publishDate 2012
url https://hdl.handle.net/10356/49960
_version_ 1772828792282152960