Dissipative solitons in passively mode-locked fiber lasers
Passively mode-locked fiber lasers due to their capability of generating ultrashort pulses, low cost and compact size have attracted considerable attentions. Conventionally, to generate ultrashort pulses the mode-locked fiber lasers were operated in the anomalous dispersion regime, where the natural...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/49974 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-49974 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-499742023-07-04T16:46:04Z Dissipative solitons in passively mode-locked fiber lasers Wu, Xuan Tang Dingyuan School of Electrical and Electronic Engineering Network Technology Research Centre DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Passively mode-locked fiber lasers due to their capability of generating ultrashort pulses, low cost and compact size have attracted considerable attentions. Conventionally, to generate ultrashort pulses the mode-locked fiber lasers were operated in the anomalous dispersion regime, where the natural balance between the fiber dispersion and optical Kerr effect shapes the mode-locked pulses into optical solitons. Recent studies have further shown that optical solitons could even be formed in the normal dispersion regime, where the soliton formation is a result of the mutual interaction among the cavity dispersion, fiber nonlinearity, laser gain saturation and gain bandwidth filtering. The solitons formed in the mode-locked fiber lasers are a type of dissipative solitons. The dynamics of dissipative solitons formed in a fiber laser is governed by the Ginzburg-Landau equation. Different from the conventional nonlinear Schrödinger equation (NLSE) type of solitons, dissipative solitons possess a number of new properties, such as scalable pulse energy, strong frequency chirp. Although there have been considerable theoretical and numerical studies on the properties and features of the dissipative solitons, no systematic experimental studies on them have been made, since such dissipative solitons were only experimentally observed recently. The current PhD thesis presents results of extensive experimental investigations on the features and dynamics of the dissipative solitons formed in passively mode-locked fiber lasers. DOCTOR OF PHILOSOPHY (EEE) 2012-05-28T03:25:30Z 2012-05-28T03:25:30Z 2012 2012 Thesis Wu, X. (2012). Dissipative solitons in passively mode-locked fiber lasers . Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/49974 10.32657/10356/49974 en 229 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Wu, Xuan Dissipative solitons in passively mode-locked fiber lasers |
description |
Passively mode-locked fiber lasers due to their capability of generating ultrashort pulses, low cost and compact size have attracted considerable attentions. Conventionally, to generate ultrashort pulses the mode-locked fiber lasers were operated in the anomalous dispersion regime, where the natural balance between the fiber dispersion and optical Kerr effect shapes the mode-locked pulses into optical solitons. Recent studies have further shown that optical solitons could even be formed in the normal dispersion regime, where the soliton formation is a result of the mutual interaction among the cavity dispersion, fiber nonlinearity, laser gain saturation and gain bandwidth filtering. The solitons formed in the mode-locked fiber lasers are a type of dissipative solitons. The dynamics of dissipative solitons formed in a fiber laser is governed by the Ginzburg-Landau equation. Different from the conventional nonlinear Schrödinger equation (NLSE) type of solitons, dissipative solitons possess a number of new properties, such as scalable pulse energy, strong frequency chirp. Although there have been considerable theoretical and numerical studies on the properties and features of the dissipative solitons, no systematic experimental studies on them have been made, since such dissipative solitons were only experimentally observed recently. The current PhD thesis presents results of extensive experimental investigations on the features and dynamics of the dissipative solitons formed in passively mode-locked fiber lasers. |
author2 |
Tang Dingyuan |
author_facet |
Tang Dingyuan Wu, Xuan |
format |
Theses and Dissertations |
author |
Wu, Xuan |
author_sort |
Wu, Xuan |
title |
Dissipative solitons in passively mode-locked fiber lasers |
title_short |
Dissipative solitons in passively mode-locked fiber lasers |
title_full |
Dissipative solitons in passively mode-locked fiber lasers |
title_fullStr |
Dissipative solitons in passively mode-locked fiber lasers |
title_full_unstemmed |
Dissipative solitons in passively mode-locked fiber lasers |
title_sort |
dissipative solitons in passively mode-locked fiber lasers |
publishDate |
2012 |
url |
https://hdl.handle.net/10356/49974 |
_version_ |
1772825948961374208 |