Numerical study on materials with micro-structure
The development of composite materials has extended material property combinations and ranges, and this area is still continuing to be industrialized. Composites are divided into two categories, namely: matrix-particulate composites and bi-continuous composites. In matrix-particulate composites, the...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/50104 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-50104 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-501042023-03-04T19:10:44Z Numerical study on materials with micro-structure Lui, Zi Yee. Fan Hui School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering::Mechanics and dynamics The development of composite materials has extended material property combinations and ranges, and this area is still continuing to be industrialized. Composites are divided into two categories, namely: matrix-particulate composites and bi-continuous composites. In matrix-particulate composites, the matrix and reinforcement particles/fibres are clearly identified, while in bi-continuous composites, the matrix and particulate (or fibre) phases cannot be distinguished clearly. Past research has shown the improvements in mechanical properties of the bi-continuous composites such as increased elastic modulus and strength which is directly related to the phase morphology, as compared to traditionally discontinuous two-phase composites. In this paper, a two-phase bi-continuous composite is proposed to be modelled using a finite element scheme with random distribution strategy. The effects of the effective elastic constants will be investigated with varying refinement level, and with varying domain sizes of a certain phase, to see if there is potential for further development of such composites. Two kinds of bi-continuous composites will be investigated, and they are 1) Epoxy/Aluminium, and 2) Epoxy/Alumina. The phases in the bi-continuous composites are chosen such that they have a Young’s modulus ratio of 20 (Epoxy/Aluminium) and 100 (Epoxy/Alumina) between the phases. The results will then be verified with the well-known Hashin-Shtrikman bounds (H-S bounds). Bachelor of Engineering (Mechanical Engineering) 2012-05-29T09:11:34Z 2012-05-29T09:11:34Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/50104 en Nanyang Technological University 86 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering::Mechanics and dynamics |
spellingShingle |
DRNTU::Engineering::Mechanical engineering::Mechanics and dynamics Lui, Zi Yee. Numerical study on materials with micro-structure |
description |
The development of composite materials has extended material property combinations and ranges, and this area is still continuing to be industrialized. Composites are divided into two categories, namely: matrix-particulate composites and bi-continuous composites. In matrix-particulate composites, the matrix and reinforcement particles/fibres are clearly identified, while in bi-continuous composites, the matrix and particulate (or fibre) phases cannot be distinguished clearly. Past research has shown the improvements in mechanical properties of the bi-continuous composites such as increased elastic modulus and strength which is directly related to the phase morphology, as compared to traditionally discontinuous two-phase composites.
In this paper, a two-phase bi-continuous composite is proposed to be modelled using a finite element scheme with random distribution strategy. The effects of the effective elastic constants will be investigated with varying refinement level, and with varying domain sizes of a certain phase, to see if there is potential for further development of such composites. Two kinds of bi-continuous composites will be investigated, and they are 1) Epoxy/Aluminium, and 2) Epoxy/Alumina. The phases in the bi-continuous composites are chosen such that they have a Young’s modulus ratio of 20 (Epoxy/Aluminium) and 100 (Epoxy/Alumina) between the phases. The results will then be verified with the well-known Hashin-Shtrikman bounds (H-S bounds). |
author2 |
Fan Hui |
author_facet |
Fan Hui Lui, Zi Yee. |
format |
Final Year Project |
author |
Lui, Zi Yee. |
author_sort |
Lui, Zi Yee. |
title |
Numerical study on materials with micro-structure |
title_short |
Numerical study on materials with micro-structure |
title_full |
Numerical study on materials with micro-structure |
title_fullStr |
Numerical study on materials with micro-structure |
title_full_unstemmed |
Numerical study on materials with micro-structure |
title_sort |
numerical study on materials with micro-structure |
publishDate |
2012 |
url |
http://hdl.handle.net/10356/50104 |
_version_ |
1759854479399714816 |