Acoustic eigenfrequency analysis of some musical instruments

This project deals with the acoustic eigenfrequency analysis of some musical instruments. There are two parts for this project: The first part of this project deals with the computation of eigenfrequencies of some musical instruments. The instruments considered include string instruments (e.g. gu...

Full description

Saved in:
Bibliographic Details
Main Author: Kua, Li Shan.
Other Authors: Ang Whye Teong
Format: Final Year Project
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/50331
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-50331
record_format dspace
spelling sg-ntu-dr.10356-503312023-03-04T19:35:04Z Acoustic eigenfrequency analysis of some musical instruments Kua, Li Shan. Ang Whye Teong School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering This project deals with the acoustic eigenfrequency analysis of some musical instruments. There are two parts for this project: The first part of this project deals with the computation of eigenfrequencies of some musical instruments. The instruments considered include string instruments (e.g. guitar) and woodwind instruments (e.g. flute, horn, clarinet etc.) governed by the one-dimensional wave equation, and percussion instruments (e.g. circular drum, cymbals) governed by the two-dimensional wave equation. Analytical formulae for the eigenfrequencies of the guitar and the woodwind instruments can be found using the mathematical method of ‘Separation of Variables’. For the circular drum and cymbals, their eigenfrequencies have to be computed by solving equations which involve Bessel functions. A MATLAB program is written to extract these eigenfrequencies. The second part of this project deals with the construction and analysis of a simple three-stringed instrument and a set of panpipes. These instruments are constructed based on the eigenfrequency formulae obtained in the first part. Their frequency characteristics can be determined by a sound analyser software called the ‘Real-time Analyser’. Sounds produced by these instruments are first picked up and measured by an external microphone and their frequency waveforms are displayed later. Bachelor of Engineering (Mechanical Engineering) 2012-05-31T09:25:03Z 2012-05-31T09:25:03Z 2012 2012 Final Year Project (FYP) http://hdl.handle.net/10356/50331 en Nanyang Technological University 92 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Kua, Li Shan.
Acoustic eigenfrequency analysis of some musical instruments
description This project deals with the acoustic eigenfrequency analysis of some musical instruments. There are two parts for this project: The first part of this project deals with the computation of eigenfrequencies of some musical instruments. The instruments considered include string instruments (e.g. guitar) and woodwind instruments (e.g. flute, horn, clarinet etc.) governed by the one-dimensional wave equation, and percussion instruments (e.g. circular drum, cymbals) governed by the two-dimensional wave equation. Analytical formulae for the eigenfrequencies of the guitar and the woodwind instruments can be found using the mathematical method of ‘Separation of Variables’. For the circular drum and cymbals, their eigenfrequencies have to be computed by solving equations which involve Bessel functions. A MATLAB program is written to extract these eigenfrequencies. The second part of this project deals with the construction and analysis of a simple three-stringed instrument and a set of panpipes. These instruments are constructed based on the eigenfrequency formulae obtained in the first part. Their frequency characteristics can be determined by a sound analyser software called the ‘Real-time Analyser’. Sounds produced by these instruments are first picked up and measured by an external microphone and their frequency waveforms are displayed later.
author2 Ang Whye Teong
author_facet Ang Whye Teong
Kua, Li Shan.
format Final Year Project
author Kua, Li Shan.
author_sort Kua, Li Shan.
title Acoustic eigenfrequency analysis of some musical instruments
title_short Acoustic eigenfrequency analysis of some musical instruments
title_full Acoustic eigenfrequency analysis of some musical instruments
title_fullStr Acoustic eigenfrequency analysis of some musical instruments
title_full_unstemmed Acoustic eigenfrequency analysis of some musical instruments
title_sort acoustic eigenfrequency analysis of some musical instruments
publishDate 2012
url http://hdl.handle.net/10356/50331
_version_ 1759857291034624000