Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites

There is a great need for advanced functional materials such as light-weight and high strength materials, super capacitive materials, highly conductive materials for many advanced engineering applications. Carbon nanotube (CNT)/polymer composites are a new class of materials with a wide range of pro...

Full description

Saved in:
Bibliographic Details
Main Author: Cheng, Henry Kuo Feng
Other Authors: Chan Siew Hwa
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/50687
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-50687
record_format dspace
spelling sg-ntu-dr.10356-506872023-03-11T17:51:23Z Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites Cheng, Henry Kuo Feng Chan Siew Hwa Li Lin School of Mechanical and Aerospace Engineering A*STAR Singapore Institute of Manufacturing Technology DRNTU::Engineering::Materials::Compositional materials science There is a great need for advanced functional materials such as light-weight and high strength materials, super capacitive materials, highly conductive materials for many advanced engineering applications. Carbon nanotube (CNT)/polymer composites are a new class of materials with a wide range of properties for engineering applications. However, the major challenges for CNT/polymer composites are to attain a uniform dispersion of CNTs in polymer matrices and an efficient interfacial adhesion between CNTs and matrices. Therefore, the objective of this thesis is to fabricate CNT/polymer composites for various engineering applications using a melt-mixing technique. The modifications, such as physical and chemical functionalisations, of multiwalled carbon nanotubes (MWCNTs) were also made. The properties of the CNT/polymer composites, such as electrical, thermal, mechanical, morphological and rheological properties, and the relevant mechanisms have been studied systematically. The improved interfacial adhesion between MWCNTs and a matrix polymer as well as the uniform dispersion of MWCNTs in the polymer matrix were achieved by means of functionalisations of MWCNTs. Moreover, a complementary effect between MWCNTs and conductive carbon black (CCB) was found to promote the formation of electrically conductive network of the carbon fillers in the polymer matrix, resulting in a dramatic increase in the electrical conductivity of the resultant composites. DOCTOR OF PHILOSOPHY (MAE) 2012-09-03T05:03:28Z 2012-09-03T05:03:28Z 2012 2012 Thesis Cheng, H. K. F. (2012). Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/50687 10.32657/10356/50687 en 260 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Compositional materials science
spellingShingle DRNTU::Engineering::Materials::Compositional materials science
Cheng, Henry Kuo Feng
Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
description There is a great need for advanced functional materials such as light-weight and high strength materials, super capacitive materials, highly conductive materials for many advanced engineering applications. Carbon nanotube (CNT)/polymer composites are a new class of materials with a wide range of properties for engineering applications. However, the major challenges for CNT/polymer composites are to attain a uniform dispersion of CNTs in polymer matrices and an efficient interfacial adhesion between CNTs and matrices. Therefore, the objective of this thesis is to fabricate CNT/polymer composites for various engineering applications using a melt-mixing technique. The modifications, such as physical and chemical functionalisations, of multiwalled carbon nanotubes (MWCNTs) were also made. The properties of the CNT/polymer composites, such as electrical, thermal, mechanical, morphological and rheological properties, and the relevant mechanisms have been studied systematically. The improved interfacial adhesion between MWCNTs and a matrix polymer as well as the uniform dispersion of MWCNTs in the polymer matrix were achieved by means of functionalisations of MWCNTs. Moreover, a complementary effect between MWCNTs and conductive carbon black (CCB) was found to promote the formation of electrically conductive network of the carbon fillers in the polymer matrix, resulting in a dramatic increase in the electrical conductivity of the resultant composites.
author2 Chan Siew Hwa
author_facet Chan Siew Hwa
Cheng, Henry Kuo Feng
format Theses and Dissertations
author Cheng, Henry Kuo Feng
author_sort Cheng, Henry Kuo Feng
title Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
title_short Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
title_full Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
title_fullStr Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
title_full_unstemmed Physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
title_sort physical and chemical modifications of carbon nanotubes for the development of advanced polymer nanocomposites
publishDate 2012
url https://hdl.handle.net/10356/50687
_version_ 1761781569147633664