Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics

Induced-charge nonlinear electrokinetic phenomena have drawn increasing attention not only due to their fundamental importance but also due to their potential applications for manipulating fluid flows and particles in microfluidics. Such type of nonlinear electrokinetic phenomena is jointly driven b...

Full description

Saved in:
Bibliographic Details
Main Author: Zhao, Cunlu
Other Authors: Yang Chun, Charles
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/50865
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-50865
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Chemical engineering
DRNTU::Engineering::Mechanical engineering
DRNTU::Science::Physics::Electricity and magnetism
DRNTU::Engineering::Nanotechnology
spellingShingle DRNTU::Engineering::Chemical engineering
DRNTU::Engineering::Mechanical engineering
DRNTU::Science::Physics::Electricity and magnetism
DRNTU::Engineering::Nanotechnology
Zhao, Cunlu
Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
description Induced-charge nonlinear electrokinetic phenomena have drawn increasing attention not only due to their fundamental importance but also due to their potential applications for manipulating fluid flows and particles in microfluidics. Such type of nonlinear electrokinetic phenomena is jointly driven by the external electric field and the surface charge induced by the same field on polarizable or conducting surfaces, and is also frequently referred to as induced-charge electrokinetic phenomena. The fluid or particle velocity generated by induced-charge electrokinetics is proportional to the square of the external electric field strength. This is strikingly different from the conventional linear electrokinetics for which the fluid or particle velocity is linearly proportional to the external electric field strength. As a result, the induced-charge electrokinetics can generate larger flow rates and even allows for net flows under AC driving electric fields. Based on the basic theories of electrokinetics and electrostatics, effective electric boundary conditions between liquid-solid interfaces are derived for induced-charge electrokinetics under two situations. These boundary conditions are capable of predicting the induced zeta potentials over surfaces of solids with finite electric properties which are crucial for theoretical characterization of induced-charge electrokinetics. The applications of these two types of boundary conditions are demonstrated by analyzing the DC field driven induced-charge electroosmosis in a slit microchannel embedded with a pair of dielectric blocks and the AC field driven induced-charge electroosmosis around a leaky-dielectric cylinder, respectively. The calculations show that the basic flow patterns for induced-charge electroosmosis are the flow vortices which get stronger as the polarizability and /or the conductivity of solids increase. A complete numerical model is then developed to describe dynamic characteristics of the charging of electric double layer and the associated flows around polarizable dielectrics. The presented model does not invoke various assumptions that can be easily violated in practical applications but usually are made in existing analyses. The comparison with a benchmark solution ensures the validity of the complete model. It is shown that the complete model corroborates the two time scales during the EDL charging revealed in former asymptotic analyses. More importantly, the detailed information inside the EDL during the transient charging is resolved for the first time, which provides insight into the induced-charge electrokinetic phenomena with finite thickness of EDLs. Furthermore,  the  concept  of  induced‐charge  electrokinetics  is  extended  to  nanofluidics. Two nanofluidic systems, i.e., a straight nanochannel and a tapered nanochannel, are proposed  for  flexible modulations of both ionic  transport and fluid flow. For the straight channel, the modulations are achieved by th control  of gate voltage (i.e., the voltage applied on the conducting walls of nanochannel).  For  the  tapered channel,  the modulations are achieved by varying  the direction  and magnitude of external electric field and the taper angel of the channel walls.  Both  systems  are  advantageous  over  other  nanofluidic  systems  driven  by  the  conventional  linear  electrokinetics  which  usually  exhibit  poor  control  of  both  ionic transport and fluid flow. Finally,  a  novel  method  relying  on  induced‐charge  electrokinetics  is  developed for particle trapping. The proposed technique has been demonstrated experimentally  for  high‐throughput  trapping  and  concentration  of  particles  ranging  from  submicron  to  several microns.  In  addition,  a  theoretical model is  formulated  to  explain  the  experimental  observations  and  the  trapping mechanisms. 
author2 Yang Chun, Charles
author_facet Yang Chun, Charles
Zhao, Cunlu
format Theses and Dissertations
author Zhao, Cunlu
author_sort Zhao, Cunlu
title Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
title_short Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
title_full Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
title_fullStr Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
title_full_unstemmed Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
title_sort induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics
publishDate 2012
url https://hdl.handle.net/10356/50865
_version_ 1761781495393943552
spelling sg-ntu-dr.10356-508652023-03-11T17:41:05Z Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics Zhao, Cunlu Yang Chun, Charles School of Mechanical and Aerospace Engineering DRNTU::Engineering::Chemical engineering DRNTU::Engineering::Mechanical engineering DRNTU::Science::Physics::Electricity and magnetism DRNTU::Engineering::Nanotechnology Induced-charge nonlinear electrokinetic phenomena have drawn increasing attention not only due to their fundamental importance but also due to their potential applications for manipulating fluid flows and particles in microfluidics. Such type of nonlinear electrokinetic phenomena is jointly driven by the external electric field and the surface charge induced by the same field on polarizable or conducting surfaces, and is also frequently referred to as induced-charge electrokinetic phenomena. The fluid or particle velocity generated by induced-charge electrokinetics is proportional to the square of the external electric field strength. This is strikingly different from the conventional linear electrokinetics for which the fluid or particle velocity is linearly proportional to the external electric field strength. As a result, the induced-charge electrokinetics can generate larger flow rates and even allows for net flows under AC driving electric fields. Based on the basic theories of electrokinetics and electrostatics, effective electric boundary conditions between liquid-solid interfaces are derived for induced-charge electrokinetics under two situations. These boundary conditions are capable of predicting the induced zeta potentials over surfaces of solids with finite electric properties which are crucial for theoretical characterization of induced-charge electrokinetics. The applications of these two types of boundary conditions are demonstrated by analyzing the DC field driven induced-charge electroosmosis in a slit microchannel embedded with a pair of dielectric blocks and the AC field driven induced-charge electroosmosis around a leaky-dielectric cylinder, respectively. The calculations show that the basic flow patterns for induced-charge electroosmosis are the flow vortices which get stronger as the polarizability and /or the conductivity of solids increase. A complete numerical model is then developed to describe dynamic characteristics of the charging of electric double layer and the associated flows around polarizable dielectrics. The presented model does not invoke various assumptions that can be easily violated in practical applications but usually are made in existing analyses. The comparison with a benchmark solution ensures the validity of the complete model. It is shown that the complete model corroborates the two time scales during the EDL charging revealed in former asymptotic analyses. More importantly, the detailed information inside the EDL during the transient charging is resolved for the first time, which provides insight into the induced-charge electrokinetic phenomena with finite thickness of EDLs. Furthermore,  the  concept  of  induced‐charge  electrokinetics  is  extended  to  nanofluidics. Two nanofluidic systems, i.e., a straight nanochannel and a tapered nanochannel, are proposed  for  flexible modulations of both ionic  transport and fluid flow. For the straight channel, the modulations are achieved by th control  of gate voltage (i.e., the voltage applied on the conducting walls of nanochannel).  For  the  tapered channel,  the modulations are achieved by varying  the direction  and magnitude of external electric field and the taper angel of the channel walls.  Both  systems  are  advantageous  over  other  nanofluidic  systems  driven  by  the  conventional  linear  electrokinetics  which  usually  exhibit  poor  control  of  both  ionic transport and fluid flow. Finally,  a  novel  method  relying  on  induced‐charge  electrokinetics  is  developed for particle trapping. The proposed technique has been demonstrated experimentally  for  high‐throughput  trapping  and  concentration  of  particles  ranging  from  submicron  to  several microns.  In  addition,  a  theoretical model is  formulated  to  explain  the  experimental  observations  and  the  trapping mechanisms.  DOCTOR OF PHILOSOPHY (MAE) 2012-11-27T01:21:21Z 2012-11-27T01:21:21Z 2012 2012 Thesis Zhao, C. (2012). Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/50865 10.32657/10356/50865 en 265 p. application/pdf