Synthesis of nanomaterials for thin films solar cells application
Solar cell has been sought after as alternative power source for our daily life. However, there are several constraints in the extensive usage of solar cells, such as efficiency and stringent condition fabrication requirement. One possible solution to these problems is with the use of chalcopyrite-b...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/51377 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Solar cell has been sought after as alternative power source for our daily life. However, there are several constraints in the extensive usage of solar cells, such as efficiency and stringent condition fabrication requirement. One possible solution to these problems is with the use of chalcopyrite-based thin film solar cells. High efficiency of solar cells can be achieved with these materials.
In this report, two methods of processing of chalcopyrite-based thin film solar cell based on copper indium selenide (CISe) were proposed. The first method is the nanoparticle method. In this work, the synthesis of crystalline CISe nanoparticle were studied. The second method involves the solution deposition of the precursors. In this work, the deposition method and post-deposition annealing condition to produce crystalline CISe thin film are studied.
The results of the experiments concluded that both methods were feasible to produce crystalline CISe thin film for solar cell applications. The nanoparticle method was found to produce better results compared to solution deposition method. However, both have different potential for application in large-scale production. |
---|