Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations

As is well known, meshless methods are often accepted as an important numerical technique, and are increasingly studied in recent years. Objectives of developing a meshless method are to overcome some drawbacks in conventional numerical techniques, such as the finite element method. However, the mai...

Full description

Saved in:
Bibliographic Details
Main Author: Zou, Hua
Other Authors: Li Hua
Format: Theses and Dissertations
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/52045
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-52045
record_format dspace
spelling sg-ntu-dr.10356-520452023-03-11T17:51:33Z Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations Zou, Hua Li Hua School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mathematics and analysis::Simulations As is well known, meshless methods are often accepted as an important numerical technique, and are increasingly studied in recent years. Objectives of developing a meshless method are to overcome some drawbacks in conventional numerical techniques, such as the finite element method. However, the main challenges we often encounter here includes the construction of an appropriate interpolation function, which is able to interpolate the field variables with uniformly or randomly distributed field nodes that are scattered in regular or irregular domains, in order to achieve more accurate computation. A novel meshless method, termed the random integral quadrature (RIQ) method, is developed for solving the generalized integral equations in this work. By the RIQ method, the integral governing equations are discretized directly with randomly or uniformly distributed field nodes. This is achieved by discretizing the integral governing equations first through the generalized integral quadrature (GIQ) technique over a set of background virtual nodes, and then by interpolating the function values of the virtual nodes over a set of the field nodes through the Kriging interpolation technique. The RIQ method is first validated by the second kind of Fredholm integral equations and the second kind of Volterra integral equations defined in 1-D, 2-D and 3-D integral domains, and then applied for solving the integral equations with irregular integral domains, the Volterra nonlinear integral equations, and the peridynamic problems. The theoretical analysis together with the numerical case studies has proved the accuracy, efficiency and wide applications of the RIQ method. DOCTOR OF PHILOSOPHY (MAE) 2013-04-22T02:27:28Z 2013-04-22T02:27:28Z 2013 2013 Thesis Zou, H. (2013). Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/52045 10.32657/10356/52045 en 237 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mathematics and analysis::Simulations
spellingShingle DRNTU::Engineering::Mathematics and analysis::Simulations
Zou, Hua
Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
description As is well known, meshless methods are often accepted as an important numerical technique, and are increasingly studied in recent years. Objectives of developing a meshless method are to overcome some drawbacks in conventional numerical techniques, such as the finite element method. However, the main challenges we often encounter here includes the construction of an appropriate interpolation function, which is able to interpolate the field variables with uniformly or randomly distributed field nodes that are scattered in regular or irregular domains, in order to achieve more accurate computation. A novel meshless method, termed the random integral quadrature (RIQ) method, is developed for solving the generalized integral equations in this work. By the RIQ method, the integral governing equations are discretized directly with randomly or uniformly distributed field nodes. This is achieved by discretizing the integral governing equations first through the generalized integral quadrature (GIQ) technique over a set of background virtual nodes, and then by interpolating the function values of the virtual nodes over a set of the field nodes through the Kriging interpolation technique. The RIQ method is first validated by the second kind of Fredholm integral equations and the second kind of Volterra integral equations defined in 1-D, 2-D and 3-D integral domains, and then applied for solving the integral equations with irregular integral domains, the Volterra nonlinear integral equations, and the peridynamic problems. The theoretical analysis together with the numerical case studies has proved the accuracy, efficiency and wide applications of the RIQ method.
author2 Li Hua
author_facet Li Hua
Zou, Hua
format Theses and Dissertations
author Zou, Hua
author_sort Zou, Hua
title Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
title_short Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
title_full Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
title_fullStr Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
title_full_unstemmed Development of a novel meshless method - random integral quadrature (RIQ) method and its engineering application for solving integral equations
title_sort development of a novel meshless method - random integral quadrature (riq) method and its engineering application for solving integral equations
publishDate 2013
url https://hdl.handle.net/10356/52045
_version_ 1761781680257892352