Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference

MATLAB simulations were performed for a conventional non-coherent binary frequency-shift keying (NCBFSK) receiver employing fast frequency hopping (FFH) spread spectrum over Rayleigh fading channel with both individual and composite effect of partial band noise interference (PBNI) and multi-tone int...

全面介紹

Saved in:
書目詳細資料
主要作者: Tang, You Hui.
其他作者: Li Kwok Hung
格式: Final Year Project
語言:English
出版: 2013
主題:
在線閱讀:http://hdl.handle.net/10356/52682
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
id sg-ntu-dr.10356-52682
record_format dspace
spelling sg-ntu-dr.10356-526822023-07-07T15:50:58Z Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference Tang, You Hui. Li Kwok Hung Teh Kah Chan School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems MATLAB simulations were performed for a conventional non-coherent binary frequency-shift keying (NCBFSK) receiver employing fast frequency hopping (FFH) spread spectrum over Rayleigh fading channel with both individual and composite effect of partial band noise interference (PBNI) and multi-tone interference (MTI). Each diversity reception is assumed to fade independently. The energy of each symbol was held constant; thus, as diversity increases energy per chip decreases. The partial band noise interference was modelled as a Gaussian process. While multi-tone jamming was assumed to employ the strategy of n=1 band multi-tone jamming, where only a single jamming tone is allowed per hop slot. The effects of additive white Gaussian noise (AWGN) were also included. The interferences were first analysed individually using linear diversity combining technique before the combination of both into the Monte Carlo simulations. Effects of the different power density combination for PBNI and MTI across other diversity combining techniques such as product diversity combining, hard-decision-majority-vote (HDMV) diversity combining and self–normalized (SN) diversity combining would also be considered in this report. Bachelor of Engineering 2013-05-22T04:16:52Z 2013-05-22T04:16:52Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/52682 en Nanyang Technological University 68 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
Tang, You Hui.
Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
description MATLAB simulations were performed for a conventional non-coherent binary frequency-shift keying (NCBFSK) receiver employing fast frequency hopping (FFH) spread spectrum over Rayleigh fading channel with both individual and composite effect of partial band noise interference (PBNI) and multi-tone interference (MTI). Each diversity reception is assumed to fade independently. The energy of each symbol was held constant; thus, as diversity increases energy per chip decreases. The partial band noise interference was modelled as a Gaussian process. While multi-tone jamming was assumed to employ the strategy of n=1 band multi-tone jamming, where only a single jamming tone is allowed per hop slot. The effects of additive white Gaussian noise (AWGN) were also included. The interferences were first analysed individually using linear diversity combining technique before the combination of both into the Monte Carlo simulations. Effects of the different power density combination for PBNI and MTI across other diversity combining techniques such as product diversity combining, hard-decision-majority-vote (HDMV) diversity combining and self–normalized (SN) diversity combining would also be considered in this report.
author2 Li Kwok Hung
author_facet Li Kwok Hung
Tang, You Hui.
format Final Year Project
author Tang, You Hui.
author_sort Tang, You Hui.
title Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
title_short Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
title_full Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
title_fullStr Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
title_full_unstemmed Diversity-combining receiver for FFH/FSK systems over composite effects of partial-band noise interference and multi-tone interference
title_sort diversity-combining receiver for ffh/fsk systems over composite effects of partial-band noise interference and multi-tone interference
publishDate 2013
url http://hdl.handle.net/10356/52682
_version_ 1772825405819977728